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Preface 

The theme of the XML Database Symposium (XSym) is the convergence of database 
technology with XML technology. Since the first International XML Symposium in 
2003, XSym has continued to provide a forum for academics, practitioners, users and 
vendors to discuss the use of and synergy between advanced XML technologies.  

XSym 2006 received 32 full paper submissions. Each submitted paper underwent 
a rigorous review by independent referees. These proceedings represent a collection 
of eight excellent research papers. Their focus is on building XML repositories and 
covers the following topics: XML query processing, caching, indexing and navigation 
support, structural matching, temporal XML, and XML updates. 

The organizers would like to express their gratitude to the XSym program com-
mittee for their efforts in providing very thorough evaluations of the submitted papers 
under significant time constraints. We also would like to thank Microsoft for their 
sponsorship and for the use of the Microsoft Conference Management Toolkit, and 
the local organizers, especially, Kyuseok Shim, for all they did to make XSym a 
pleasant and successful event.  
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Kappa-Join: Efficient Execution of Existential
Quantification in XML Query Languages

Matthias Brantner1,�, Sven Helmer2, Carl-Christian Kanne1, and Guido Moerkotte1

1 University of Mannheim, Mannheim, Germany
{brantner, kanne, moerkotte}@informatik.uni-mannheim.de

2 Birkbeck College, University of London, London, United Kingdom
sven@dcs.bbk.ac.uk

Abstract. XML query languages feature powerful primitives for formulating
queries, involving comparison expressions which are existentially quantified. If
such comparisons involve several scopes, they are correlated and, thus, become
difficult to evaluate efficiently.

In this paper, we develop a new ternary operator, called Kappa-Join, for effi-
ciently evaluating queries with existential quantification. In XML queries, a cor-
relation predicate can occur conjunctively and disjunctively. Our decorrelation
approach not only improves performance in the conjunctive case, but also allows
decorrelation of the disjunctive case. The latter is not possible with any known
technique. In an experimental evaluation, we compare the query execution times
of the Kappa-Join with existing XPath evaluation techniques to demonstrate the
effectiveness of our new operator.

1 Introduction

Almost every XML query language features a construct that allows to express an existen-
tially quantified comparison of two node-set valued subexpressions in a concise manner.
Unfortunately, current XML query processors lack efficiency and scalability when fac-
ing such constructs [5,20]. The corresponding semantics resembles that of nested and
correlated subqueries, which are notoriously difficult to evaluate efficiently. To illustrate
this point, let us consider the following query: For hiring a teaching assistant, we search
the database for a student who took an exam that was graded better than ‘B’.

for $s in //student
let $best := //exam[grade < ’B’]/@id
let $exams := $s/examination/@id
where $exams = $best
return $s/name

Q1

Here, both sides of the
comparison in the where-
clause are set-valued be-
cause there are many good
students and students take
more than one exam. The

existential semantics of the XQuery general comparison operator requires that all stu-
dents are returned which have at least one exam also contained in the set $best.

A naı̈ve evaluation technique evaluates the steps in order of appearance. In Q1, this
means to reevaluate the value of $best and $exams for every iteration of the for

� This work was supported by the Deutsche Forschungsgemeinschaft under grant MO 507/10-1.

S. Amer-Yahia et al. (Eds.): XSym 2006, LNCS 4156, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M. Brantner et al.

loop, and then check for an item that occurs in both sets. This is a wasteful strategy:
A closer look at Q1 reveals that, in contrast to $exams, the value of $best does not
depend on the value of $s, making the reevaluation of $best unnecessary. A common
strategy in such cases is to move the evaluation of $best out of the for loop, and to
materialize and reuse the result. However, this only alleviates the problem of repeated
evaluation of the expression to which $best is bound. To answer the query, it is still
necessary to evaluate the where-predicate, which is a correlated nested query due to
the existential semantics of the ’=’ operator and the fact that it refers to variables from
two scopes, the independent $best and the dependent $exams.

In this paper, we are concerned with an efficient evaluation of existentially quantified
correlation predicates such as the where-clause of Q1. While this area has received
some attention in the past [5,20], we show that, even in simple cases like our Query
Q1, there is still unexploited optimization potential for typical query patterns in XML
query languages. We propose the novel Kappa-Join operator that fits naturally into exe-
cution plans for quantified correlation predicates, is easy to implement and yet features
a decorrelated evaluation algorithm.

Q1 is ”simple” because the correlation predicate occurs “alone”. What if the correla-
tion predicates become more complex? Assume that we consider either good or senior
students to be eligible for assistantship, as in the following query:

for $s in //student
let $best := //exam[grade < ’B’]/@id
let $exams := $s/examination/@id
where $exams = $best or $s/semester>5
return $s/name

Q2

If the two clauses were
combined with and, we
could use techniques to
decorrelate queries with cor-
relation predicates that oc-
cur conjunctively. If the
clauses were not correla-
tion predicates, we could use techniques to improve performance for disjunctive predi-
cates (e.g. Bypass operators [8]). However, there is no published technique to decorre-
late disjunctively occurring correlation predicates.

Hence, we also present a Bypass variant of the Kappa-Join. This allows a decorre-
lated evaluation of disjunctively occurring correlation predicates, which has not been
accomplished for any query language so far.

The main contributions of this paper are as follows:

– We introduce the novel ternary Kappa-Join operator that, while simple to imple-
ment, can efficiently evaluate complex correlated queries where the correlation
predicate occurs conjunctively.

– We introduce a Bypass variant of the Kappa-Join that allows us to extend our tech-
nique to queries where the correlation predicate occurs in a disjunction.

– We provide experimental results, demonstrating the superiority of both the Kappa-
Join and the Bypass Kappa-Join compared to other evaluation techniques.

The remainder of this paper is organized as follows. In the next section, we discuss
basic concepts, such as dependency and correlation in XPath. In Sec. 3, we discuss the
drawbacks of existing decorrelation approaches for XML query languages. Further, we
introduce our novel Kappa-Join operator to efficiently evaluate queries with conjunctive
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correlation. Sec. 4 investigates the case of disjunctive correlation and presents the novel
Bypass Kappa-Join. In Sec. 5 we experimentally confirm the efficiency of our approach.
The last section concludes the paper.

2 XPath Query Processing

The problems discussed in the introduction affect most existing XML query languages.
However, all of the involved issues occur even for the simple XPath language in its first
version because it features nested predicates and existential semantics. In the following,
we limit our discussion to XPath 1.0, because peripheral topics such as typing, query
normalization, and translation into an algebraic representation can be presented in a
simpler fashion for XPath than for the more powerful XQuery language. However, all
of the techniques presented in this paper also apply for full-blown XQuery or similar
languages, as long as they are evaluated algebraically (e.g. [23]). In fact, both queries
from the introduction can be expressed in XPath syntax, as we will see below.

2.1 Normalization

The techniques presented in this paper are mainly developed to optimize comparison
expressions with one dependent and one independent operand. To correctly identify
such expressions, the first step of our normalization is to rewrite a predicate such that
it consists of literals and the logic operators ∧ and ∨. After normalization, each literal
l consists either of a comparison or a negation thereof, i.e. l is of the form e1θe2 or
not(e1θe2), where θ ∈ {=, <,≤, >,≥, �=}.

One example for ”hidden” comparisons are location paths or other node-set valued
expressions when used as Boolean expressions. In such cases, we make the node-set
valued expression the argument of an auxiliary exists function and compare its result to
true, which yields a regular binary comparison expression.

Further, to provide efficient evaluation for disjunctively occurring comparison ex-
pressions, the second step of our normalization separates literals occurring in a con-
junction from those that occur disjunctively. To this end, we employ an operation for
collecting all literals that occur conjunctively: A literal l occurs conjunctively in a pred-
icate pk if pk[false] can be simplified to false. That is, if we replace all occurrences of
l inside pk by false, the repeated (syntactical) application of the Boolean simplification
rules to eliminate Boolean constants simplifies pk[false] to false.

2.2 Context Dependency and Correlation

In this paper, we are concerned with efficient evaluation of existentially quantified com-
parison expressions that are correlated. In general, correlation occurs when a variable
of a nested scope is compared with a variable from an enclosing scope. XPath does not
have variables that can be declared by the user, but we can define correlation in terms
of XPath contexts, as follows.

Every XPath expression is evaluated with respect to a given context, which is a se-
quence of context items. For our discussion, it is sufficient to use a definition of context
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item that is slightly simpler than the original XPath context item. A context item is
a tuple with three components: the context node, the context position, and the context
size. In XPath, there is one global context, which must be specified as parameter of
the evaluation process. The value of some constructs depends on local contexts that are
generated by other subexpressions. The constructs that refer to the local context are lo-
cation steps, relative location paths, and calls to position() and last(). We call
these expressions dependent expressions. Expressions whose value is independent of
the local context are called independent expressions.

If we apply this terminology to Queries Q1 and Q2 from the introduction, given in
XPath syntax, we have

//student

independent

[examination/@id

dependent

= //exam[grade <′ B′]/@id

independent

]/ name
dependent

Q1

//student[examination/@id

dependent

= //exam[grade <′ B′]/@id

independent

or semester
dependent

> 5
indep.

]/name
Q2

We now can define the term correlation for XPath as used in the remainder of this pa-
per: A comparison expression with two node-set valued operands one being dependent
and one being independent is called correlation predicate, because it compares a lo-
cal context and an enclosing context. All example queries presented in the introduction
and above contain correlation predicates. A correlation predicate can occur both con-
junctively and disjunctively. We call the former case conjunctive correlation and the
latter disjunctive correlation. In Q1 there is only one comparison expression which is a
special case of conjunctive correlation, i.e. one with only a single literal. Q2 is an exam-
ple with disjunctive correlation. The second comparison expression is not a correlation
predicate, because the operand 5 is not node-set valued.

3 Kappa-Join for Conjunctive Correlation

The key to an efficient evaluation of correlated queries is to avoid redundant compu-
tation, e.g. the evaluation of the inner independent expression. Such techniques are
called decorrelation techniques and have been studied extensively in the context of re-
lational and object-oriented systems [9,11,12,17,18,26]. Similar techniques have been
proposed for the evaluation of XQuery and XPath [5,20]. One of them is an approach
that applies decorrelation to existentially quantified comparison expressions [5]. How-
ever, this approach is suboptimal because unnecessary duplicates are generated and
must be removed at the end of the evaluation.

The optimizations developed in this paper are presented in the form of algebraic op-
erators. Hence, we need an algebra capable of evaluating XPath. We have chosen NAL
as a perfect fit, since a translation from XPath to NAL is also available [4]. However,
our approach is not limited to NAL and the translation of XPath into it. For example,
our techniques are also applicable to other algebraic evaluation strategies such as [25].

At the beginning of this section, we describe our assumptions about algebraic transla-
tion and evaluation in more detail. For a more elaborate treatment of these topics, please
refer to [4,5]. We then recapitulate the decorrelation approach from [5] and discuss its
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drawbacks. Afterwards, we introduce the novel Kappa-Join operator that features an
efficient decorrelation algorithm avoiding these drawbacks.

3.1 Algebra and Translation

The universe of the NAL algebra for XPath 1.0 is the union of the domains of the atomic
XPath 1.0 types (string, number, boolean) and the set of ordered sequences
of tuples which represent XPath contexts. Each tuple represents one context node, posi-
tion and size. Special attribute names are used to hold the context node (cn), the context
position (cp) and the context size (cs).

The NAL algebra features well-known operators [4,20]. All the sequence-valued op-
erators in the logical algebra have a corresponding implementation as an iterator [14] in
the physical algebra. In the following, we primarily need the Selection σ, the Projection
Π , the Semi-Join , and the D-Join−→. All operators are described when they are needed
for the first time. Additionally, they are formally defined in our technical report [21].

To convert XPath queries into algebraic expressions, we use the translation intro-
duced in [4]. We briefly recapitulate the relevant part of the translation process by elab-
orating on the translation result for Q1 (see Fig. 1). However, we omit the translation of
subexpressions that are orthogonal to our discussion and denote them by T [e], where
e stands for any XPath expression. For instance, we denote the translation of the lo-
cation path //student by T [//student]. Its result is the sequence of context nodes
produced by the location path.

T [name]

σ

T [//student] Aexists

T [examination/@id] T [//exam[grade <′ B′]/@id]

Fig. 1. Translation sketch for Q1

For Q1 (see Fig. 1) the algebra ex-
pression provides a Selection (σ) for
the only literal. In the subscript (de-
noted by a dashed line) of this Se-
lection, there is an Aggregation op-
erator (A) that aggregates the input
sequence into a singleton sequence
with a single attribute by applying
the aggregation function exists. It
returns true if there exists at least one tuple in the input sequence. This input sequence
stems from a Semi-Join ( ), whose input sequences in turn stem from the two operands
of the comparison expression, i.e. the two (translated) location path expressions. For a
comparison between two node-sets, as in the particular case of Q1, we have an existen-
tial semantics. In the equality case, this fact can be leveraged by using a Semi-Join.

Because of the repeated evaluation of e3 the worst-case complexity is O(|e1| ×
|e2| × |e3|) where |e| denotes the cardinality of an expression e and, in this case,
e1 = //student, e2 = examination/@id, and e3 = //exam . . ..

3.2 Existing Decorrelation Techniques

We now recapitulate the decorrelation approach introduced in [5] and discuss its draw-
backs. Again, we take Query Q1 to illustrate this (see Fig. 1). The fundamental idea of
decorrelation is to avoid unnecessary evaluations of an inner independent
expression. In [5] this is achieved by pulling up the Semi-Join (see Fig. 1) into the
top-level algebraic expression (see Fig. 2).



6 M. Brantner et al.

This expression needs some explanations. The dependent location path is connected to
the outer expression using a D-Join (−→). The D-Join joins each tuple t ∈ T [//student]
to all tuples returned by the evaluation of the dependent path T [examination/@id]. For
each t, T [examination/@id] is evaluated once, and free occurrences of variables in the
dependent expression are substituted with the attribute values of t, i.e. the current context.
At the end all resulting sequences are concatenated.1

The dependent expression, i.e. the evaluation using the D-Join, might produce dupli-
cates for tuples from T [//student], hence the tidA operator (tuple identifier) is needed
to identify the tuples resulting from the outer expression.

T [name]

ΠtidA

−→
tidA

T [//student]

T [examination/@id]

T [//exam[grade <′ B′]/@id]

Fig. 2. Decorrelation for Query Q1

The idea is to densely num-
ber the tuples, store this number
in an attribute A, and use it later
on to perform a duplicate elimina-
tion. To do this, we introduce an
order-preserving duplicate elimina-
tion projection ΠtidA , which re-
moves multiple occurrences of the
same tid-value A. It keeps the first
tuple for a given A value and throws
away the remaining tuples with the
same value for A.

Clearly, the main advantage of
this approach is that the independent expression is evaluated only once. In addition,
if the Semi-Join’s implementation uses a custom data structure (e.g. a hash-table) to
improve performance, this data structure has to be initialized only once, compared to
one initialization per student in the naı̈ve correlated evaluation from Fig. 1. However,
decorrelation comes at a price: The outer expression produces duplicates which have
to be eliminated. Below, we show how we can avoid them using the novel Kappa-Join.
Our evaluation in Sec. 5 confirms this claim.

3.3 Kappa-Join

To avoid the above-mentioned generation of duplicates, but nevertheless gain perfor-
mance by avoiding unneeded evaluations of the independent expression, we introduce the
Kappa-Join operator. It combines the advantages of the evaluation strategies from Fig. 2
and Fig. 1 into one operator and capitalizes on efficient implementation techniques.

Logical Definition. The Kappa-Join is a ternary operator, i.e. it has three argument
expressions e1, e2, and e3. It is defined by the equation

e1κ
e2
cn=cn′e3 := σAx;exists(e2 cn=cn′e3)

(e1)

where cn is the context node resulting from the evaluation of e2 and cn′ the context
node from e3. As for conventional join operators, we denote the producer expressions

1 In [23] this operator is called MapConcat.
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e1 and e3 the as outer producer and inner producer, respectively. The second producer
expression e2 (in the superscript) is called link producer because it acts as a link between
the outer and inner producer within the join predicate. The outer expression e1 and the
inner expression e3 are independent expressions, i.e. they do not depend on any of the
Kappa-Join’s other arguments. In contrast, the expression e2 is dependent on e1.

Informally, the result sequence of the operator contains all tuples from the outer
producer (e1) for which there exists at least one tuple in the link producer (e2), when
evaluated with respect to the current tuple of e1, that satisfies the predicate p which is a
comparison from attributes of e2 and attributes of the the inner producer (e3).

Translation with Kappa-Join. There exist two alternatives to incorporate the Kappa-
Join into an algebraic plan: (1) The Kappa-Join’s definition matches the pattern that
results from the canonical translation of correlation predicates (e.g. see Fig. 1). Hence,
the Kappa-Join can replace this pattern after translation and, hence, already decorrelate
during translation. (2) The other alternative is to modify the translation procedure such
that a Kappa-Join is used for conjunctive correlation predicates.

T [name]

κT [examination/@id]
=

T [//student] T [//exam[grade <′ B′]/@id]

Fig. 3. Query Q1 with Kappa-Join

Because our experiments (see Sec. 5)
show that the Kappa-Join always dom-
inates the canonical approach and sim-
plifies the translation procedure, we have
chosen the second alternative. Fig. 3 con-
tains the resulting algebra expression for
Q1. Here, the location path //student
is mapped to the outer producer of the
Kappa-Join . The inner location path examination/@id is the (dependent) link pro-
ducer, and the independent expression //exam[grade<’B’]/@id is mapped to the
inner producer.
OPEN

1 while T ← INNERPRODUCER.NEXT

2 do HASHTABLE.INSERT(T )

NEXT

1 while T1 ← OUTERPRODUCER.NEXT

2 do
3 LINKPRODUCER.OPEN(T1 )
4 while T2 ← LINKPRODUCER.NEXT

5 do
6 if HASHTABLE.LOOKUP(T2)
7 then
8 LINKPRODUCER.CLOSE

9 return T1
10
11 LINKPRODUCER.CLOSE

12 return nil

Fig. 4. Pseudocode for the Kappa-Join

Implementation. The secret of the Kappa-
Join lies in its simple, yet efficient implemen-
tation. It improves performance beyond that
of the operator combination in its logical de-
finition. Fig. 4 shows the pseudocode for the
implementation of the Kappa-Join as an iter-
ator [14].

In its openmethod, the Kappa-Join builds
a data structure, e.g. a hash-table, containing
the attributes from the inner producer that are
part of the join predicate. In its nextmethod,
the Kappa-Join initializes the link producer
for every tuple T1 from its outer producer.
Like a Semi-Join, it then probes the hash-

table with tuples T2 from the link producer until a matching one is found, and returns
the outer tuple as soon as it finds a match. The Kappa-Join does not always enumerate
all tuples from the dependent link producer, while building the hash-table once only.
Hence, the worst-case complexity is O(|e1|× |e2|+ |e3|), assuming constant hash-table
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insert and lookup, respectively. However, the average complexity depends on the dis-
tribution of the data and is usually much better. Compared to the algebra plan from
Fig. 2, the plan in Fig. 3 using the Kappa-Join has three main advantages: (1) it avoids
to enumerate all tuples from the link producer because it immediately returns a result if
one match is found (see Line 9). (2) It does not produce duplicates of tuples from the
outer producer because the result contains at most one tuple from T [//student], and
(3) consequently saves the cost of a final duplicate elimination. These effects combine
to yield the speedup that can be achieved (see Sec. 5).

4 Kappa-Join for Disjunctive Correlation

In the previous section, we demonstrated how complex correlation predicates that occur
in a conjunction can be evaluated efficiently. However, as shown in our Example Q2,
correlation predicates can also occur disjunctively. Several optimization techniques for
queries containing non-correlated disjunctive predicates have been proposed [7,8,16].
One of them is the Bypass technique [8], that is used to avoid unnecessary evaluations.
However, to the best of our knowledge, nobody has shown how to decorrelate disjunc-
tively occurring correlation predicates. In this section, we show how this can be achieved.

4.1 Problem

T [name]

σ

T [//student] or

Aexists

T [examination/@id] T [//exam[...]/@id]

T [semester > 5]

Fig. 5. Translation sketch for Q2

Consider the canonical algebra plan for
Query Q2 (see Fig. 5). This algebra ex-
pression is similar to the one presented in
Fig. 1 for Q1, except for the or function
call in the subscript of the Selection. Dis-
junctively occurring literals are translated
using an or function call. It evaluates to
true if either of its producer expressions
does.

The pattern used for the correlation
predicate does not match the definition of the Kappa-Join because of the extra literal.
Hence, we cannot proceed as for Query Q1. The only technique currently available to
improve the canonical plan is the so-called shortcut evaluation of the disjunction, which
means that we can avoid evaluation of the expensive correlation predicate for those stu-
dents where the cheaper literal semester > 5 is true. Below, we recall the Bypass
technique which does exactly that.

4.2 Bypass Technique

The Bypass technique was used to prevent the unnecessary evaluation of predicates that
occur disjunctively [8]. For this, the Bypass technique adds a new class of operators to
the conventional algebra. In contrast to regular operators, Bypass operators have two
output sequences. The first sequence contains the tuples that qualify for the operator’s
predicate. The second sequence consists of all other tuples. The two disjoint sequences
are called true- and false-sequence. The existing Bypass technique provides a Bypass
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Selection, a Bypass Join and a Bypass Semi-Join [8]. For the purpose of this paper, we
only need the Bypass Selection.

Consider as a first example the algebra representation of Q2 extended by a Bypass
Selection operator (σ±) for evaluating the cheaper predicate semester > 5. Fig. 6
shows the resulting plan. Here and in the following, the false-sequence is indicated by
dotted lines. The evaluation according to this plan starts with computing all result tuples
for the outer expression (//student).

T [name]
.
∪

σ±

T [//student] T [semester > 5]

σ

Aexists

=

T [examination/@id]

T [//exam[...]/@id]

Fig. 6. Q2 with Bypass Selection

The Bypass Selection divides
these tuples into two disjoint se-
quences. The true-sequence con-
tains the students that fulfill the
predicate semester > 5. Accord-
ingly, the false-sequence con-
tains the tuples that fail this pred-
icate. The tuples of both se-
quences form two separate paths
which are merged by

.
∪. The

tuples from the false-sequence
must pass the second Selection operator computing the complex correlation predicate.
This operator is responsible for filtering out those tuples that do not qualify for any of
the two predicates. The two sequences are disjoint. Hence, no duplicate elimination is
required by

.
∪. However, as the XPath semantics requires its result to be in document

order, a merge as in merge-sort may be required. This can be done, for example, by
numbering the tuples or use node ids if they represent order. The final processing of
T [name] completes the result.

Looking at Fig. 6, we are in for a surprise: The Bypass Selection we introduced to
allow shortcut evaluation of the disjunction made the Kappa-Join pattern reappear! We
discuss in the following subsection how to leverage this for decorrelation of disjunctive
queries with a single correlation predicate.

4.3 Kappa-Join for a Single Disjunctive Correlation Predicate

T [name]
.
∪

σ±

T [//student] T [semester > 5]

κT [examination/@id]
=

T [//exam[...]/@id]

‘

Fig. 7. Q2 with Bypass Selection and Kappa-Join

Query Q2 contains a single corre-
lation predicate within a disjunc-
tion. Bypass plans have the ad-
vantage that the expression in the
false-sequence can be optimized
separately. In general, whenever
there is only a single correlation
predicate per disjunction we can
apply decorrelation. As seen in
Fig. 6, we can again recognize the pattern that allows us to integrate the Kappa-Join
for the conjunctive case. In the false-sequence of Fig. 6, we can use the Kappa-Join,
yielding the expression shown in Fig. 7.

In this case, the plan takes advantage of both: (1) shortcut evaluation of the liter-
als connected by disjunction, and (2) decorrelation of correlation predicates allowing
efficient execution if the cheaper predicate in the disjunction fails.
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4.4 Kappa-Join for Multiple Disjunctive Correlation Predicates

We have seen that the Bypass technique facilitates decorrelation if there is only one
correlation predicate in the disjunction. Unfortunately, if there is more than one, we
are again at a loss. Consider as an example the following Query Q3. In addition to the
good students, we also want to query the database for students that have already been a
teaching assistant for a given lecture.

//student[examination/@id= //exam[grade < ’B’]/@id or
@id = //lecture[title=’NCT’]/helpers/helper/@student]/name

Q3

T [name]
.
∪

ΠtidA

±
=

−→
tidA

T [//student]

T [examination/@id]

T [//exam[. . .]/@id]

κT [@id]
=

T [//lecture[...]/.../@student]

Fig. 8. Incorrect decorrelated bypass plan for Q3

We would like to
decorrelate both cor-
relation predicates. At
first glance, it is tempt-
ing to apply the decor-
relation strategy that was
discussed in Sec. 3.2.
Fig. 8 shows an alge-
bra expression for Q3
applying this technique,
but using a Bypass Semi-
Join instead of a regular

Semi-Join. However, this approach is not feasible. The first D-Join on the leftmost
branch of the plan eliminates those items produced by //student for which the depen-
dent expression exmination/@id produces an empty result. If we have a conjunctive
query, this is no problem.

T [name]
.
∪

κ±,T [examination/@id]
=

T [//student] T [//exam[...]/@id]

κT [@id]
=

T [//lecture[...]/.../@student]

Fig. 9. Bypass plan sketches for Q2 with Kappa-Join

However, the //student
items failing the first dis-
junct could still qualify for
the second disjunct, and
dropping them as in Fig. 8
produces an incorrect result.
Note that the Bypass Semi-
Join does not help: it comes
too late. Problems of this
kind are often solved by us-
ing an Outer-Join, or in this
case outer D-Join. However,
this would still require duplicate elimination on tidA, as shown in the true-sequence.

It turns out that we can do much better by applying the Bypass Kappa-Join. As every
bypass operator, the Bypass Kappa-Join has two result sequences. The true-sequence is
the same as for the regular Kappa-Join. The tuples in the false-sequence are the ones
from the outer producer for which there was no match in the inner producer or for which
the link producer returned an empty result. In the false-stream, we now have our familiar
pattern and can employ the decorrelation strategy as if the correlation predicate was a
single correlation predicate. Fig. 9 shows the result. This plan finally has everything
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we want: (1) the evaluation of both correlation predicates can be done in a decorrelated
fashion, (2) the Kappa-Join avoids unneeded duplicate generation and elimination for
both correlation predicates, and (3) we have shortcut evaluation and evaluate the second
correlation predicate only if the first fails.

5 Evaluation

To show the effectiveness of our approach, we ran experiments with different XPath
evaluation engines against our canonical and optimized approaches. Additionally, we
performed measurements that compare the existing decorrelation strategy against the
new Kappa-Join operator. We chose the freely available engines

– Xalan C++ 1.8.0 using Xerces C++ version 2.6.0,
– Saxon for Java 8.7.1,
– Berkeley DB XML 2.0.9 (DBXML) using libpathan 1.99 as XPath engine,
– MonetDB 4.8.0 using MonetDB-XQuery-0.8.0,
– the evaluator provided by the XMLTaskForce [19] (XTF), and
– Natix [10] for the execution of the canonical, decorrelated (ICDE06 [5]), and Kappa-

Join plans.

5.1 Environment

The environment we used to perform the experiments consisted of a PC with an Intel
Pentium 4 CPU at 2.40GHz and 1 GB of RAM, running Linux 2.6.11-smp. The Natix
C++ library was compiled with gcc 3.3.5 with optimization level 2.

For Xalan, Saxon, and XTF, we measured the net time to execute the query. The
time needed to parse the document and generate the main memory representation is
subtracted from the elapsed evaluation time. For the evaluation of MonetDB, Berkeley
DB XML and Natix, we imported the documents into the database. The time needed
for this is not included in the execution times. The queries were executed several times
with an empty buffer pool and without any indexes.

Documents. We generated two different sets of documents. The first set is used for the
example queries Q1-Q3 used throughout this paper. These documents were generated
by the ToXgene data generator [1]2. The smallest document contains 50 employees, 100
students, 10 lectures and 30 exams. With each document we quadrupled these numbers.
That is, the biggest document contains 51200 employees, 102400 students, 10240 lec-
tures and 30720 exams. This led to moderate document sizes between 59kB and 43MB.

The second set is used for the comparison of the existing decorrelation strategy and
the new Kappa-Join operator. We generated seven documents structured according to
the following template:

2 The DTD as well as the generator template file are listed in the appendix of our technical
report [21].
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<?xml version=’1.0’?>
<gen>
<e1 id=’0’> <e2 id=’0’/> ... i-e2 nodes <e2 id=’i’/> </e1>

...
<e1 id=’0’> <e2 id=’0’/> ... i-e2 nodes <e2 id=’i’/> </e1>
<e3 id=’RandomNumber’/>
</gen>

Each of the documents contains 1000 e1 nodes and 1000 e3 nodes. For each docu-
ment we varied the number of e2 nodes (under an e1 node) between 10 and 500 nodes.
This gave us documents between 252kB and 13M.

Query Name Figure
Q1 decorr Fig. 2

kappa Fig. 3
Q2 bypass Fig. 6

kappa Fig. 7
Q3 bypasskappa Fig. 9

Fig. 10. Query Evaluation Plans

Queries. We executed performance mea-
surements for all example queries (Q1,
Q2, and Q3) presented throughout this pa-
per. For Natix, we generated several dif-
ferent query evaluation plans. For each
of the queries we generated the canoni-
cal plan as specified in [4]. For example,
Fig. 1 shows the plans for Q1. Further,
we generated plans incorporating our op-
timization strategies. Fig. 10 maps names
for optimized query evaluation plans to
figures that illustrate the used techniques.

Additionally, we executed performance measurements that compare the existing
decorrelation strategy with our Kappa-Join operator. Therefore, we executed the fol-
lowing query on the synthetic data set:

/gen/e1[e2/@id = /gen/e3/@id] Q4

5.2 Results and Interpretation

Fig. 11 contains the results of our performance measurements (elapsed time in seconds).
The best execution time(s) for each column in all tables are printed in bold face. Those
that did not finish within 6 hours are marked by DNF (did not finish). For MonetDB the
evaluation of some queries ran out of memory on bigger documents. These cases are
denoted by OOM.

Subfigures 11(a), 11(b), and 11(c) show the execution times for Q1, Q2, and Q3,
respectively. For all queries on all documents, our decorrelated approach performs and
scales best. Especially for the disjunctive queries Q2 and Q3, the performance of all
other approaches drops considerably when executed on bigger documents. In contrast,
our plans containing the Kappa-Join (Q2) and Bypass Kappa-Join (Q3) almost scale
linearly with the size of the document.

For Q1 the execution times of the existing decorrelation approach (called ICDE06 [5])
behave similar to those of the Kappa-Join. This is because all students took very few
exams, i.e. only between one and three. For this reason, we compared those two strategies
on the synthetic data set. Subfigure 11(d) compares the two strategies. The execution
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Documents
Evaluator 1 2 3 4 5 6
Xalan 0.30 0.38 6.17 95.6 1552 DNF
DBXML 0.07 0.66 11.6 336 DNF DNF
MonetDB 0.31 0.38 2.05 36.1 OOM OOM
Saxon 0.21 0.28 0.53 1.49 11.14 141
XTF 0.40 4.72 82.8 DNF DNF DNF
Natix
•canonical 0.25 2.62 38.2 583 9637 DNF
•decorr 0.02 0.03 0.06 0.19 0.75 2.99
•kappa 0.02 0.03 0.06 0.19 0.75 2.88

(a) Query Q1

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.02 0.23 3.63 54.7 893 12453
DBXML 0.06 0.39 6.87 207 DNF DNF
MonetDB 0.25 0.36 2.02 36.2 OOM OOM
Saxon 0.22 0.30 0.62 1.44 7.82 85.4
XTF 0.76 8.60 9180 DNF DNF DNF
Natix
•canonical 0.16 1.64 20.9 333 5598 DNF
•bypass 0.16 1.59 20.7 323 5436 DNF
•kappa 0.03 0.05 0.16 0.60 2.51 9.91

(b) Query Q2

Documents
Evaluator 1 2 3 4 5 6
Xalan 0.06 0.75 12.6 199 3201 DNF
DBXML 0.30 1.61 30.2 4057 DNF DNF
MonetDB 0.31 0.50 3.29 62.9 OOM OOM
Saxon 0.20 0.28 0.54 1.48 10.9 138
XTF 0.48 5.14 94.8 DNF DNF DNF
Natix
•canonical 0.37 3.49 DNF DNF DNF DNF
•bypasscanonical 0.37 3.43 48.1 749 12492 DNF
•bypasskappa 0.02 0.04 0.10 0.35 1.44 5.91

(c) Query Q3
 0
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(d) ICDE06 vs. Kappa-Join (Q4)

Fig. 11. Performance measurements

times of the existing decorrelation strategy grow linearly with the number of e2 nodes
per e1 node. This is because it has to enumerate all e2 nodes and finally perform a
duplicate elimination on the appropriate e1 nodes. The execution times of the Kappa-
Join operator are almost constant because the Kappa-Join does not need to enumerate
all e2 nodes and saves the cost of a final duplicate elimination.

6 Related Work

Work on XPath evaluation falls into three general categories. In the first category, we
have main memory interpreters like Xalan, XSLTProc, and [13]. Clearly, these ap-
proaches do not scale well. In the second category, we find work where XML is shred-
ded into relational systems and XPath is evaluated on this shredded representation. In
this category we find approaches like Pathfinder [3]. The problem with this approach
are the numerous joins that have to be executed. Finally, the third category uses a native
(tree) algebraic approach. Here, we find SAL [2], TAX [15], yet another algebra [25],
and [4]. None of the approaches in any of three classes performs decorrelation.

In the relational and object-oriented context, decorrelation has been studied exten-
sively [9,11,12,17,18,26]. Similar techniques have been proposed for the evaluation of
XQuery and XPath [5,20]. Gottlob et.al [13] also proposed an approach that avoids
multiple evaluations of XPath expressions.

Several optimization techniques for queries containing disjunctive predicates have
been proposed [7,8,16]. One of them is the Bypass technique [8], which we extend with
support for decorrelation. Because bypass operators have two output streams, which are
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unioned later, the resulting expression forms a directed acyclic graph (DAG). Strategies
for implementing Bypass operators and query evaluation engines that support DAG-
structured query plans can be found in [8,22,24]. In [6] we extend our technique for
decorrelating SQL queries with disjunctive predicates.

7 Conclusion

We demonstrate how to efficiently evaluate XML queries featuring existentially quan-
tified correlation predicates. To this end, we have introduced the novel Kappa-Join op-
erator that naturally fits into algebraic execution plans for quantified correlation predi-
cates. It is simple to implement and yet highly efficient. However, if disjunctions come
into play, the Kappa-Join and all known decorrelation techniques fail. By injecting the
Kappa-Join with the Bypass technique, we are also able to perform decorrelated eval-
uation if the correlation predicate occurs in a disjunction. All other approaches cannot
evaluate such a case efficiently. Our performance measurements show that the Kappa-
Join outperforms existing approaches by up to two orders of magnitude.

Encouraged by these results, we plan to enhance our approach by incorporating fur-
ther optimization techniques into it. These include handling of magic sets (to optimize
dependent expressions) and factorizing common subexpressions. However, our future
work does not stop here. We also want to introduce cost functions for our algebraic op-
erators (especially the Kappa-Join) to enable an optimizer to choose between different
evaluation plans.

Acknowledgments. We would like to thank Simone Seeger for her comments on the
manuscript.
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Abstract. A well-known rule of thumb claims, it is better to scan than
to use an index when more than 10% of the data are accessed. This
rule was formulated for relational databases. But is it still valid for XML
queries? In this paper we develop similar rules of thumb for XML queries
by experimentally comparing different execution strategies, e.g. using
navigation or indices. These rules can be used immediately for heuristic
optimization of XML queries, and in the long run, they may serve as a
foundation for cost-based query optimization in XQuery.

1 Motivation

XPath is used as a stand-alone query language and as part of XSLT or XQuery to
address parts of an XML document. As an increasing number of applications rely
on one of these query languages, efficient evaluation of XPath expressions has
emerged as a focal point of research. In particular, efficient retrieval techniques
must be chosen when queries access large instances of XML documents. Three
core aspects influence their performance:

1. storage structures [2,11,12,16,8,21,28,7],
2. algorithms to evaluate XPath queries [1,15,16,10,27,6], and
3. an optimizer that selects a cost-optimal retrieval method given 1 and 2.

As the (incomplete) list of citations indicates, many proposals exist for the
first two aspects. However, research on optimization of XPath has just scratched
the surface. The only cost-based optimizers we know [5,29] are limited to index-
based storage structures for which estimating access costs does not fundamen-
tally differ from relational storage. Most query engines only perform heuristic
optimizations. Instead, we expect to find better query execution plans when
cost-based optimization is used. Nevertheless, it would already help if we had
simple rules of thumb, as established for relational databases [14]. In particular,
is it still true for XML queries that it is better to scan (or navigate) than to use
an index when more than 10% of the data are accessed?

In this paper we analyze the performance of known techniques for the evalua-
tion of structural XPath queries. Particularly, we use Natix [11] to compare the
following two execution strategies: (1) navigation through the logical structure of

S. Amer-Yahia et al. (Eds.): XSym 2006, LNCS 4156, pp. 16–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Index vs. Navigation in XPath Evaluation 17

the document and (2) index-based retrieval in conjunction with structural joins.
Our findings can be applied to improve heuristics used in XPath query optimiz-
ers. In the long term, such experiments will help us to derive cost information
which can be used by cost-based XQuery optimizers.

To be able to derive costs, it is important to understand the architecture
that underlies query evaluation. Hence, we present an abstract model for storing
XML documents in Sec. 2. This storage model includes indices which employ
XML node labeling schemes. In Sec. 3 we proceed with an overview of NAL,
the Natix physical algebra. The algebraic operators included in NAL form the
building blocks for the query evaluation plans we investigate in Sec. 4. These
evaluation plans are experimentally compared in Sec. 5. Our experiments show
that there is not only one best choice for evaluating XPath expressions. But it is
still true that index based-techniques are often superior when only small parts
of the data are touched by a query. In contrast, full scans perform better when
large fragments of the input qualify for the query result. Based on these results,
we conclude the paper and discuss future work (Sec. 6).

2 The Storage Model

Since retrieving data is one of the main cost drivers for XML query evaluation, it
is important to understand how XML data is stored and how it can be accessed.
In this section we briefly survey fundamental techniques available to access XML
data.

2.1 Physical XML Storage

The most general approach to store XML data maps the logical structure of an
XML document to physical storage structures. These physical storage structures
offer primitives to directly navigate through the logical structure of the XML
document. Consequently, it is possible to reconstruct the logical structure of
the original document from its physical representation. While there are many
possible implementations for this mapping, e.g. [4,11,16,8,7,27,28], we believe
that some general ideas are shared by all storage schemes:

1. Fragments of the XML document are assigned to storage units.
2. The document structure can be reconstructed from the physical storage.
3. The cost to access a part of the document depends on its storage location.

Consider the XML document depicted in Fig. 1 as an ordered labeled tree. The
nodes in the tree correspond to element nodes, and the edges represent parent-
child relationships. A main memory representation, e.g. DOM, assigns an address
in main memory to each node in the tree. Pointers connect a node to its children,
siblings, or parent. It is quite easy to see that the logical document structure
can be reconstructed from this representation by traversing the pointers. Given
the node with subscript 1.1.1.1, one can imagine that accessing its first child
might be cheaper than accessing a node that is further away in the document
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DOC1

A1.1

Record 1

B1.1.1Record 2

A1.1.1.1

A
1.1.1.1.1 A1.1.1.1.3

A1.1.1.3

B1.1.3Record 3

A1.1.3.1

A1.1.3.1.1 A1.1.3.1.3

B1.1.5Record 4

A1.1.5.1 A1.1.5.3

A1.1.5.3.1

Fig. 1. The tree representation of an XML document

structure, e.g. the node with subscript 1.1.5.3. The latter operation might even
require disk I/O if the target node does not reside in physical main memory.

Natix assigns fragments of XML documents to records of variable size and
stores them on physical pages on disk [11]. The logical structure of the document
is preserved by a structured storage inside the records and by references to other
records. A physical storage address (NID) is assigned to each node. It is used
to implement these references or to directly access XML nodes. The document
in Fig. 1, for instance, is mapped to four physical records. It is possible to
traverse nodes inside a record or to navigate to other records in the XML store.
Navigation to a record on another page results in disk I/O if this page is not
yet in the main memory buffer. The cost of this page access depends on the
characteristics of the storage device and the location of the page on disk.

2.2 XML Node Labels

For efficient XML query evaluation, we want to support indices. Additionally,
we require an efficient processing of updates. Hence, we employ logical node
identifiers (LIDs) to abstract from physical storage locations. In Natix we have
implemented LIDs as ORDPATH IDs [9]. As an incarnation of Dewey IDs [3],
they satisfy the two requirements mentioned above. Furthermore, ORDPATH
IDs support efficient query processing because given two LIDs, it is possible to
test their structural relationship with respect to any XPath axis. In the document
shown in Fig. 1, the subscript of each node represents the ORDPATH ID assigned
to this node.

2.3 Indexing XML

We index XML documents in B+-trees as proposed by Chien at. al [2]. There
exist many other proposals for indexing XML documents, e.g. [12,21]. But we
believe that our approach provides a solid performance for a wide range of queries
and at the same time supports efficient concurrent updates.

The index we use in Natix is an implementation of a B+-tree with sibling
links based on the algorithms proposed by Jaluta et. al [20]. This B-link index
allows storing keys of variable size and performs online rebalancing and deallo-
cation operations in case of underutilized nodes. These operations are especially



Index vs. Navigation in XPath Evaluation 19

beneficial as the index performance does not deteriorate due to document up-
dates, and explicit garbage collection operations become obsolete. Other specific
features useful for processing ORDPATH IDs include key-range scans exploiting
the sibling links and high concurrency by restricting the number of latches to a
minimum.

Tag2Lid
Tag Lid
A 1.1
A 1.1.1.1
A 1.1.1.1.1
. . . . . .
A 1.1.5.3
A 1.1.5.3.1
B 1.1.1
B 1.1.3
B 1.1.5
DOC 1

Lid2Nid
Lid Nid
1 1
1.1 2
1.1.1 3
1.1.1.1 4
. . .
1.1.5 12
1.1.5.1 13
1.1.5.3 14
1.1.5.3.1 15

Fig. 2. Indexing XML documents

The general idea of our indexing scheme
is shown in Fig. 2. We create two indices:
one called Tag2Lid and the other Lid2Nid.

Tag2Lid maps tag names to LIDs. The key
value is the tag name, and the indexed
value is the LID. For the same tag name,
LIDs are returned in document order,
i.e. in ascending order.

Lid2Nid maps LIDs to their physical stor-
age address. This index is optional when
the storage manager directly provides
access to XML fragments based on their
LID. However, for generality we will ex-
plicitly use this index to locate result
nodes of an XPath expression.

3 Execution Model

Besides the physical storage structures, the cost of a query execution plan is
determined by the algorithms it uses to access the data and to evaluate the
query. Hence, we also need to comment on the available algorithms. We present
an algebraic approach to XPath evaluation because both an algebraic query
optimizer and an evaluation engine is easy to extend with new operators [1,27].
Additionally, we want to benefit from the experiences gathered with cost-based
algebraic optimizers built for relational and object-oriented databases. The Natix
Physical Algebra includes all algebraic operators we need to implement the query
execution plans (QEPs) discussed in Sec. 4.

3.1 Architecture and Notation

Our physical algebra works on sequences of tuples. Each tuple contains a set of
variable bindings representing the attributes of the tuple. Some physical oper-
ators extend these bindings by appending attribute-value pairs to a tuple. All
operators are implemented as conventional iterators [13]. Tuples are passed in
a pipelined fashion from the argument operator to its consumer. The set of
supported operators we cover here comprises the common algorithms used to
execute XPath queries [1,10,27].

To test structural relationships between LIDs or XML nodes, we arrange for
the following notations: We denote with n ⇓ m that m is descendent of n and
with n ↓ m that m is child of n.
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3.2 General Operators

The following operators are used independently of the XPath evaluation method.
The Singleton Scan (�) returns a singleton sequence consisting of the empty
tuple. We denote the Map operator by χa:e2(e1). It extends each tuple t in e1
with attribute a. The value bound to a is computed by evaluating the subscript
e2 with variable bindings taken from t. For example, we use the Map operator
to dereference physical node ids, i.e. χn:∗a(e1), or to retrieve the root node of a
document, i.e. χr:root(e1). To remove duplicates on a set of attributes A, we use
a Duplicate Elimination operator (ΠD

A (e)). To rename a set of attributes A into
another set of attributes A′, we use ΠA′:A(e). Some evaluation strategies require
us to reestablish document order on a sequence of nodes bound to attribute a.
Therefore, we employ the sort operator (Sorta). The D-Join, denoted by e1−→e2,
joins each tuple t in e1 with all tuples returned by the evaluation of e2. The result
returned by e2 depends on the attribute bindings of t. Similar to the MapConcat
operator in [27], it is used to concatenate the evaluation of location steps inside
a location path.

3.3 XPath Navigation Operators

In this paper we use the Unnest-Map operator Υcn:c/a::n(e) to evaluate XPath
location steps by navigation. Given a context node stored in variable c of a tuple
t ∈ e, it evaluates axis a and applies node test n to the remaining candidate
nodes. Each result node is bound to variable cn in the result tuple. During the
evaluation of a location step the operator navigates through the document that
potentially contains result nodes. This traversal is done for every context node.

3.4 Index-Aware Operators

For efficient XPath evaluation the Structural Join (e1
ST−J
p e2) was proposed [6].

It joins one sequence of tuples of context nodes, e1, with a sequence of candidate
nodes, e2. Both sequences are sorted in document order. Predicate p tests the
axis step relation that must hold between nodes of the two sequences. We classify
the Structural Join as index-aware because it solely uses information provided
by the LIDs and thus only relies on index information.

We employ the IndexScan (Idxn;A;p;rp) to access data stored in a B-link tree
named n, e.g. the index “Tag2Lid” or “Lid2Nid”. A is a set of attribute bindings
established by the scan. It must be a subset of the attributes defined in the
schema of the index. Predicate p optionally tests the upper and lower bound.
Residual predicate rp is an optional predicate applied to each tuple before it is
passed to the consumer operator.

4 Query Execution Plans

In Sections 2 and 3 we have laid the foundation for several evaluation techniques
available for XPath. We now discuss the following types of query execution plans
(QEPs):
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1. Navigate through the XML document (e.g. in a DOM-like fashion) [1].
2. Use indices to access the candidate nodes of each navigation step and relate

them by join operations to evaluate the query. If there are multiple navigation
steps, we have two more choices:
(a) Access indices in the order specified in the query.
(b) Reorder the index accesses and possibly sort the result nodes at the

end [29].

In our opinion, these types of QEPs comprise a wide variety of XPath evalua-
tion techniques that have not been compared yet. For each alternative mentioned
above, we present a QEP for the query /DOC/TAG1/TAG2. Even this simple query
allows us to point out the advantages of each alternative. The reason is that each
QEP exploits structural relationships, selectivities of location steps, or physical
storage characteristics to different degrees. As we will see in our experiments,
there is no single plan that is consistently faster than the other alternatives.

4.1 Plan Using Navigation

−→
χr:root

�
Sortb

ΠD
b

Υb:a/TAG2

Υa:d/TAG1

Υd:r/DOC

�

Fig. 3. Plan using
navigation

The most direct translation of the XPath expression results
in a navigational plan [1]. The result of the stacked trans-
lation of the query into our algebra is depicted in Fig. 3.
The topmost operator of the QEP is a D-Join which initial-
izes the context for the XPath query evaluation to the root
node. The right argument is evaluated with the bindings
taken from this context. The stacked translation results in a
sequence of Unnest-Map operators, each of which evaluates
one location step. In general, to compute the resulting node
set, duplicates have to be removed, and the result nodes
have to be sorted by document order. In our example query
duplicate elimination or sorting can be avoided [17,18].

When the QEP is evaluated, each Unnest-Map operator
traverses some part of the document, starting at the current context node. E.g.
during a child step all children of the current context node will be visited. When
a node satisfies all node tests, it is passed to the next operator where it may
serve as another context node.

This evaluation strategy has three basic consequences: (1) Non-matching nodes
may implicitly prune parts of the document from the traversal. Thereby, accessing
physical pages is avoided for potentially large parts of the document. (2) Location
steps may visit intermediate nodes that will never be part of a matching location
path. E.g. for descendant steps we have to look at all descendant nodes of the con-
text node. (3) During the document traversal, visiting physical pages may lead to
random I/O and multiple visits to the same physical page.

4.2 Plan Using Index

The motivation for using an index is to retrieve only nodes with tag names
that satisfy a query predicate. The translation into a plan using an index is an



22 N. May et al.

χ∗n

−→
Sortb

ΠD
b

−→
−→

−→
χr:root

�
IdxTag2Lid;d;DOC;r↓d

IdxTag2Lid;a;TAG1;d↓a

IdxTag2Lid;b;TAG2;a↓b

IdxLid2Nid;n;b;true

Fig. 4. Plan with index access in order

application of the canonical translation presented in [1] or the XQuery translation
of [10].

The result of this translation is shown in Fig. 4. The data flow of the QEP goes
from the bottom-left leaf node upwards to the root of the QEP. First, the root
node is initialized as context node. This context can be used to restrict the range
scan in the index “Tag2Lid”. This index access is performed in the dependent
part of each D-Join in the plan. We have to apply the residual predicate to
each node retrieved from the index. Together with the range predicate, this
test completes the structural test between context node and document node.
Before all physical nodes are retrieved, we possibly have to perform a duplicate
elimination and a sort [18]. Finally, we employ the index “Lid2Nid” to get the
physical nodes of the query result and access the physical nodes on disk using
a Map operator. Note that some queries do not require this final dereferencing
step, e.g. quantified queries or queries with count aggregate. This can be used
in favour of such queries.

The index-based technique has the following properties: (1) It only considers
nodes which can match the node tests in the query. (2) The index is repeatedly
accessed for each context node. This results in random I/O, as the same index
is accessed for different location steps. (3) Context information can be used to
prune the set of candidate nodes. This depends on the availability of e.g. level
information for axis steps to sibling nodes. (4) Parts of structural queries can be
answered solely based on LIDs. Hence, less information needs to be stored in the
index. This potentially decreases the required I/O bandwidth. (5) Additional
I/O is needed to retrieve the result nodes of the query.

We now turn our attention to index-based QEPs in which we reorder location
steps. We treat the reordering of location steps separately because there are two
main issues that limit the value of join reordering for XPath expressions: (1) Join
ordering in general is known to be NP hard. When we allow to sort by document
order at the end, the search space contains O((2n)!/n!) bushy join trees and
O(n!) left deep join trees [24,25,22] containing n joins. Here, we consider one
scan for each location step and include cross products. (2) The quality of the
generated plans heavily depends on the precision of cardinality estimates [19].
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χ∗n

−→
Sortb

ΠD
b

−→
−→

−→
χr:root

�
IdxTag2Lid;d;DOC;r↓d

IdxTag2Lid;b;TAG2;d⇓b∧b.level=3

IdxTag2Lid;a;TAG1;a↓b∧d↓a

IdxLid2Nid;n;b;true

Fig. 5. Plan with index access reordered

However, good methods for cardinality estimation are known only for restricted
classes of XPath [26,30].

The reordered translation is shown in Fig. 5. There are three differences to
the previous plan: (1) We reordered the axis steps. (2) The residual predicates
had to be adjusted. (3) To establish the document order, we need a final sort.

The potential value of reordering axis steps stems from the possibility of eval-
uating axis steps with low result cardinality first to minimize the number of
lookup operations in the index. The additional freedom of reordering location
steps has to be payed with an additional sort operation (which is always needed
now) and less restrictive structural predicates. Hence, it is not clear which strat-
egy is better in which case. In general, this decision should be based on costs.

4.3 Plan Using Index and Structural Join

The plans discussed in the previous section access the index for each context
node. Thanks to the Structural Join, we can evaluate a location step with a
single scan of each input and we still have full the freedom to choose the most
efficient plan among all bushy join constructed with Structural Joins [6,29].

One possible QEP using Structural Joins is depicted in Fig. 6. In this plan, a
Structural Join is performed between the nodes with tag name TAG1 and TAG2.
Since both input sequences are sorted in document order, the Structural Join can
compute its result with one scan through both sequences and some additional

χ∗n

−→
−→

−→
χr:root

�
IdxTag2Lid;d;DOC;r↓d

ST−J
a↓b

IdxTag2Lid,a;TAG1;d↓a
Idx Tag2Lid;b;TAG2;

d⇓b∧b.level=3

IdxLid2Nid;n;b;true

Fig. 6. Plan using index and Structural Join
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buffering. The resulting node sequence is sorted by document order and does
not produce duplicates.

5 Experiments

We now compare the performance characteristics of the QEPs (see Sec. 4) for
three XPath queries on synthetic data sets. First, we discuss the structure and
characteristics of the synthetic documents and introduce the XPath queries.
Then, we discuss the experimental results gathered from executing each type of
QEP on each query.

We have executed all queries on Natix Release 2.1 [11]. We used a buffer size
of 8MB. Each query was executed three times with cold buffer. We report the
average of all three evaluations. Our execution environment was a PC with two
3GHz Intel Xeon CPUs, 1 GB of RAM, 34GB hard disc (FUJITSU MAS3367NC)
running SUSE Linux with kernel 2.6.11-smp.

5.1 Data Set

To get precise performance characteristics for each of the evaluation strategies,
the queries access generated data sets. This allows us to tune the selectivity of
each XPath location step individually.

The input documents used in our experiments were generated by the XDG
document generator implemented by our group.1 It allows to specify several
parameters, i.e. the number of nodes, the document depth, the fan-out of each
element, and the number of different tag names.

Conceptually, the generator creates as many child nodes as defined by the
parameter “Fan-out” and resumes with a recursive call for each child. When
the depth of the recursive calls reaches the specified parameter value “Depth”,
no recursive calls are executed any more. The frequency of occurrences of tag
names decreases by a factor 2 for each subsequent tag name. E.g. the argument
“C” for parameter “Elements” means that the tag names A, B, and C are used
in the document where every second node gets tag name A, every fourth node
gets tag name B, and so on. To get up to 100%, nodes with tag name A are
generated. In our setup this means that exactly 50.1% of the nodes are A nodes.
The tool generates new nodes until the limit for the number of nodes (#Nodes)
is reached.

In principle, this generator might introduce correlations between predicates
such that the distribution of tag names strongly depends on the parent nodes.
For our data sets this is not the case for tag names A, B, C, and D. However, the
remaining tag names only occur as leaf nodes.

We generated documents of four sizes with the parameters summarized in
Fig. 7. In this figure, we give the size of the generated text. This setup allows
us to control the selectivity of each location step between 50% and 0.1% by
changing the name test of each location step.
1 Available for download at http://db.informatik.uni-mannheim.de/xdg.html
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Document Parameter Document Instance
Parameter Description 0.327MB 3.46MB 36.5MB 384MB

#Nodes # of generated XML elements 10,000 100,000 1,000,000 10,000,000
Depth max. depth of the document 4 5 6 7

Fan-out # of children per element node 10
Elements # of different tag names “J” (10)

Fig. 7. Parameters and characteristics of generated documents

5.2 XPath Queries

We have compared the performance characteristics of the QEPs discussed in
Sec. 4 for the following three XPath query patterns:

Q1: /descendant::TAG. This query reveals the impact of the access patterns of
the QEPs because when evaluating this query structural information is unim-
portant. The navigational plan visits the whole document to access all potential
result nodes. In contrast, the index-based plans only visit specific parts of the
document, i.e. those including nodes with tag name TAG.

The main difference is that the navigational plan performs random I/O in
the worst case, whereas the index-based QEP can directly retrieve the requested
nodes by a range scan on the “Tag2Lid” index.

Q2: /DOC/TAG1/TAG2. With this query we investigate (1) how well each plan
alternative exploits structural properties demanded by the query, and (2) how
reordering navigation steps effects query performance.

Q3: /DOC/descendant::TAG1/descendant::TAG2. In addition to query Q2, the
cost of evaluating each step in this query is potentially much higher because level
information is less useful here. As both descendant axis steps potentially visit
large parts of the document, we expect optimizations that can reduce the I/O
involved here to be very important.

We restrict ourselves to the child axis and the descendent axis because only for
these two axes precise selectivity estimation techniques are known, e.g. [30,26].
To make our experimental results comprehensible, we ignore the other XPath
axes because we cannot easily compute the selectivity of an axis step with respect
to some arbitrary context node.

5.3 Experimental Results

Query Q1. Fig. 8 shows the results for query Q1. In Figs. 8(a) and 8(b) we
compare the performance of the navigational plan and the index-based plan for
two document sizes, i.e. 3.46MB and 384MB.

For small selectivities on the smaller document, the index-based plan performs
better than the navigational plan. As we make the node test less selective, the
index-based approach needs more time to evaluate the query while the execution
time of the navigational plan remains nearly constant. The break-even is reached
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(d) Selectivity: 0.2%

Fig. 8. Query Q1 (/descendant::TAG)

at a selectivity of about 1%. For larger selectivities, the navigational plan out-
performs the index-based plan. All these results agree with our experience in the
relational world.

In Figs. 8(c) and 8(d) we plot the query execution times for specific selectiv-
ities of 50% and 0.2% over varying document sizes.

Again, the results confirm that index-based evaluation is superior only for
selective queries. However, since two indices and the document are accessed,
more buffer pages have to replaced due to lack of space, and additional I/O
is needed. As a result, the performance of the index-based plan suffers on the
largest document instance.

Query Q2. Fig. 9 contains the results of our experiments for query Q2. We
restrict ourselves to two document sizes (3.46MB and 384MB) because the results
on the other documents do not provide any additional insight. In our exposition
we keep the selectivity of the second location step (TAG2) constant at 50% (see
Figs. 9(a) and 9(c)) and at 0.2% (see Figs. 9(b) and 9(d)). We only modified the
selectivity of the first location step (TAG1).

The navigational QEP has an almost constant execution time independent
of the selectivity. This is a direct consequence of its evaluation strategy: this
QEP has to inspect the same set of nodes to compute its result, no matter how
selective each step is. The navigational QEP dominates all other QEPs because
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Fig. 9. Query Q2 (/DOC/TAG1/TAG2)

it effectively prunes the document fragments that are not relevant for the query
result. This holds true particularly for the deeply nested document where this
plan only visits the three upper levels of the document.

The value of reordering location steps becomes apparent when we compare
the execution times of the naive and the reordered version of the index-based
plans. In the experiments depicted in Figs. 9(a) and 9(c), the reordered version
is up to ten times slower than the naive plan because the reordered QEP per-
forms the more expensive scan first (selectivity 50%). In Figs. 9(b) and 9(d) we
observe exactly the reverse behavior because the second location step is very
selective (selectivity = 0.2%). However, the differences are smaller because the
naive plan can use more information to restrict the index scan. In all experi-
ments the Structural Join behaves similar to the naive index-based evaluation
technique. The index based technique is competitive because none of the nav-
igation steps produces duplicates. Hence, no redundant index lookup is per-
formed.

The advantage of the navigational plan is partially a consequence of the docu-
ment structure. For shallow documents where we increase the number of children
per node, we expect similar behavior as for query Q3.
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Fig. 10. Query Q3 (/DOC/descendant::TAG1/descendant::TAG2)

Query Q3. For our final experiment, we replace the last two child steps of Q2 by
descendant steps: /DOC/descendant::TAG1/descendant::TAG2. The execution
times for these three alternatives are shown in Fig. 10. We present the results
for the same selectivities and document sizes as the figures for query Q2 do.

First, we discuss the navigational approach: We observe that in all figures the
evaluation times of the navigational QEP increase with an increasing selectivity
of the name tests. The reason for this is that the XPath expression generates more
context nodes for which the whole subtree is traversed. For larger selectivities,
fewer subtrees are pruned during the traversal.

In contrast, the index-based QEPs retrieve exactly the candidate nodes with
the correct tag name. However, only in Fig. 10(b) both index-based strategies
are faster than navigation for very small selectivities on a small document. The
reason for this is that our naive index-based execution strategy is not aware
of structural relationships of context nodes. As a result, the same nodes are
returned repeatedly by index lookups. We conclude that the simple index-based
QEPs do not result in an acceptable query performance.

Fortunately, the plan based on Structural Joins avoids these superfluous index
lookups. For large selectivities (of 50%) of the second step, the Structural Join
is faster when the selectivity of the first step is smaller than about 2% and the



Index vs. Navigation in XPath Evaluation 29

document is large (Fig. 10(c)). However, when we keep the selectivity of the
second step at 0.2%, the Structural Join clearly outperforms the navigational
query independent of the selectivity of the first step and the document size.
This advantage is larger when the selectivity of the location steps are small.

6 Conclusion and Future Work

There are many possibilities to optimize XPath expressions. Several indexing
and evaluation techniques have been proposed. However, we still lack cost-based
optimizers that compare alternative query evaluation plans based on costs. As
a starting point, we have compared two basic evaluation techniques: navigation-
based and index-based XPath evaluation.

Our experiments show that there is no overall winner: Each technique has its
individual strengths and weaknesses. In general, navigation is a good choice when
large parts of the input document belong to the query result or when navigation
can avoid visiting large parts of the document. Unfortunately, there is no simple
rule where the break-even point between both alternatives lies. However, a selec-
tivity of about 1% to 10% for elements of a given tag name still seem to be decisive
when navigation must be traded against index usage. For space reasons, we could
only compare a limited number of evaluation techniques. Certainly other query
evaluation techniques should be included into benchmarking, e.g. see [23].

In previous work, sophisticated cardinality estimation techniques were devel-
oped for the child axis and the descendent axis. We need to extend these results
and the results of this paper to include cost information. Using statistics or
analyzing the query processing algorithms are possibilities to achieve this goal.
We then could integrate XQuery processing techniques into cost-based query
optimizers and overcome using heuristics as is currently the case.
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ation plans. We also thank Simone Seeger for her comments on the manuscript.
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Abstract. Different models have been recently proposed for representing
temporal data, tracking historical information, and recovering the state of
the document as of any given time, in XML documents. After presenting
an abstract model for temporal XML, we discuss the problem of the valida-
tion of the temporal constraints imposed by this model. We first review the
problem of checking and fixing isolated temporal inconsistencies. Then, we
move on to study validation of a document when many temporal inconsis-
tencies of different kinds are present. We study the conditions that allow to
treat each inconsistency isolated from the rest, and give the corresponding
proofs. These properties are intended to be the basis of efficient algorithms
for checking temporal consistency in XML.

1 Introduction

The problem of validating an XML document with respect to a set of integrity
constraints after an update occurs, has recently attracted the attention of the
database community. Many incremental validation techniques have been pro-
posed [2,3,10,14]. In the temporal XML setting, although several models exist
for representing, querying and updating temporal information [1,5,7,8], little at-
tention has been given to the problem of validating the temporal constraints
imposed by these models. In Temporal XML documents, the updates must take
as input (and return) a valid XML document, not only with respect to the usual
set of integrity constraints, but also with respect to the temporal constraints
defined by the model at hand. Further, more often than not, we will not be
working with documents built from scratch using update operations, but with
a pre-existent temporal XML document; thus, we will need to efficiently check
if this document verifies a set of temporal constraints, and, if not, provide the
user with tools for fixing the inconsistencies, if needed.

In this work we address the problem of validating a set of temporal constraints
in a temporal XML document. Although our proposal is based in the data model
introduced in [12] (discussed in more detail in Section 3), it could be extended to
other data models for temporal XML. After presenting and discussing the data
model, we characterize temporal inconsistencies in temporal XML documents.
We then introduce the problem of checking inconsistencies in a document, and
fixing individual inconsistencies. Then, we move on to a more realistic scenario,
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where many inconsistencies could appear concurrently, and study the conditions
under which these inconsistencies could be teated isolated from each other. These
properties could then be embedded in efficient algorithms for fixing inconsisten-
cies in temporal XML documents. To the best of our knowledge, this is the first
contribution in this topic.

The remainder of the paper is organized as follows: in Section 2 we review
previous efforts in temporal semistructured/XML data. In Section 3 we introduce
the temporal data model. Section 4 presents the main kinds of inconsistencies
that may appear in a temporal XML document, and discusses how they can be
fixed. Section 5 addresses documents where more than one consistency condition
is violated. We conclude in Section 6.

2 Related Work

Some proposals have been recently presented addressing incremental validation
of XML documents. Kane et al [10] model XML constraints as rules, and present
a constraint checking mechanism for update operations, aimed at ensuring that
the result of an update leaves the XML document in a consistent state. Basically,
this is performed by rewriting an update query into a so-called safe update query.
Incremental validation of XML documents has also been studied in [2,3,14].

Chawathe et al proposed a historical model for semistructured data [4], that
extends the Object Exchange Model (OEM) with the ability to represent updates
and to keep track of them by means of “deltas”. Along the same lines, Oliboni et
al [13] proposed a graphical data model and query language for semistructured
data. Both works assume that the documents are consistent with respect to
the temporal constraints the models impose. Several data models for Temporal
XML have been proposed. All of them lack of a mechanism for checking the
underlying temporal constraints. In contrast, in this paper we study different
ways of tackling (temporal) consistency in temporal XML documents. Amagasa
et al [1] introduced a temporal data model based in XPath, but not a model for
updates, nor a query language taking advantage of the temporal model. Dyreson
[7] proposed an extension of XPath with support for transaction time by means
of the addition of several temporal axes for specifying temporal directions. Chien
et al [5] proposed update and versioning schemes for XML, through a scheme
where version management is performed by keeping references to the maximal
unchanged subtree in the previous version. A similar approach was also followed
by Marian et al [11]. Gao et al [8] introduced τXQuery, an extension to XQuery
supporting valid time while maintaining the data model unchanged. Queries are
translated into XQuery, and evaluated by an XQuery engine. Finally, Wang et
al have also proposed solutions based in versioning [16]. In this paper we will
work over a data model first introduced in [12].

3 Temporal XML Documents

We will introduce the model through an example, depicted in Figure 1. This
is an abstract representation of a temporal XML document for a portion of a
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Fig. 1. Example database

company involving departments and their employees. The database also records
salaries and, probably, other properties of the employees. Note that in this model,
employee’s nodes are not duplicated throughout time. For example, can see that
John and Peter worked for the Sales department in the intervals [0,10] and
[0,20] respectively, while Susan has been working for the Finance department
since instant “10”. When an edge has no temporal label, its validity interval
is assumed to be [0,Now] (i.e. the complete lifespan of the node). Thus, the
abstract representation of the temporal document presented in Figure 1 contains
the whole history of the company. We can then query the state of the database
at a certain point in time, or pose temporal queries like “employees who worked
for the Sales department continuously since the year 2000.” In [12] the authors
provided indexing schemes allowing efficient query evaluation techniques.

More formally, an XML document is a directed labeled graph, where we dis-
tinguish several classes of nodes: (a) a distinguished node r, the root of the
document, such that r has no incoming edges, and every node in the graph is
reachable from r; (b) Value nodes: nodes representing values (text or numeric);
they have no outgoing edges, and have exactly one incoming edge, from attribute
or element nodes (or from the root); (c) Attribute nodes: labeled with the name
of an attribute, plus possibly one of the ‘ID’ or ‘REF’ annotations; (d) Element
nodes: labeled with an element tag, and containing outgoing links to attribute
nodes, value nodes, and other element nodes. Each node is uniquely identified
by an integer, the node number, and is described by a string, the node label.
Edges in the document graph are constrained to be either containment edges or
reference edges. A containment edge ec(ni, nj) joins two nodes ni and nj such
that ni is either r or an element node, and nj is an attribute node, a value node
or another element node; a reference edge er(ni, nj) links an attribute node ni

of type REF, with an element node nj . We add the time dimension to document
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graphs labeling edges with intervals. We will consider time as a discrete, linearly
ordered domain. An ordered pair [a, b] of time points, with a ≤ b, denotes the
closed interval from a to b. As usual in temporal databases, the current time
point will be represented with the distinguished word ‘Now’. The document’s
creation instant will be indistinctly denoted by the instant “0′′.

A temporal label over a a containment edge ec(ni, nj), is an interval Tec
rep-

resenting the time period when the element represented by nj was contained
in the element represented by ni. Our model supports transaction time of the
containment relation. Although we do not deal with valid time, it could be ad-
dressed in an analogous way. Analogously, for reference edges, Ter

represents
the transaction time of the reference edge er(ni, nj). We note that the full
model supports other kinds of nodes, like versioned and attribute nodes, that
we will not consider here. We will use Te.TO and Te.FROM to refer to the
endpoints of the interval Te. Two temporal labels Tei

and Tej
are consecutive

if Tej
.FROM=Tei

.TO + 1. The lifespan of a node is the union of the temporal
labels of all the containment edges incoming to the node. The lifespan of the
root is the interval [t0,Now].

Definition 1 (Temporal XML Document). A Temporal XML Document
is a document graph, augmented with temporal labels and versioned nodes, that
satisfies the following conditions: (1) The union of the temporal labels of the con-
tainment edges outgoing from a node is contained in the lifespan of the node. (2)
The temporal labels of the containment edges incoming to a node are consecutive.
(3) For any time instant t, the sub-graph composed by all containment edges ec

such that t ∈ Tec
is a tree with root r, called the snapshot of D at time t, denoted

D(t). (4) For any containment edge ec(ni, nj , Tec
), if nj is a node of type ID,

the time label of ec is the same as the lifespan of ni; moreover, if there are two
elements in the document with the same value for an ID attribute, both elements
are the same. In other words, the ID of a node remains constant for all the snap-
shots of the document. (5) For any containment edge ec(ni, nj , Tec

), if nj is an
attribute of type REF, such that there exists a reference edge er(nj , nk, Tr), then
Tec

= Ter
holds. (6) Given a reference edge er(ni, nj , Ter

), Ter
⊆ lnj

holds.

Note that the second condition in Definition 1 implies that we will be working
with single intervals instead of temporal elements. This assumption simplifies the
presentation and makes the implementations more efficient, although it imposes
some constraints on the model. Our definitions and theorems can be, however,
extended to the case of temporal elements, overriding the former limitation.
Discussion on this topic, and a more detailed description of the model, can be
found in [12]. We will also need the following definition:

Definition 2 (Continuous Path and Maximal Continuous Path). A con-
tinuous path with interval T from node n1 to node nk in a temporal document
graph is a sequence (n1, . . . , nk, T ) of k nodes and an interval T such that there
is a sequence of containment edges of the form e1(n1, n2, T1), e2(n2, n3, T2),
. . . , ek(nk−1, nk, Tk), such that T =

⋂
i=1,k Ti. We say there is a maximal
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continuous path (mcp) with interval T from node n1 to node nk if T is the union
of a maximal set of consecutive intervals Ti such that there is a continuous path
from n1 to nk with interval Ti.

4 Consistency in Temporal XML

In this section we will summarize previous results on the problem of checking
consistency, and fixing isolated inconsistencies. Details can be found in [15]. In
addition, we will give the definitions and concepts needed for studying the general
problem (i.e., multiple inconsistencies), that we discuss in the next section.

Definition 3 (Inconsistencies in Temporal XML). The constraints stated
in Definition 1 are violated if: (i) there is an outgoing containment edge whose
temporal label is outside the node’s lifespan; (ii) the temporal labels of the con-
tainment edges incoming to a node are not consecutive. Here, the inconsistency
may be due to a gap or an overlapping of the temporal labels of the edges in-
coming to a node; (iii) there is a cycle in some document’s snapshot; (iv) there
exist more than one node with the same value for the ID attribute. We will de-
note these types of inconsistencies as inconsistencies of type i, type ii, type iii,
and type iv. An Interval of Inconsistency, denoted II is the closed interval where
consistency conditions in Definition 3 are not satisfied.

As we will only consider temporal issues in this paper, we will only study incon-
sistencies of types i through iii. Also, we will work with documents containing
no IDREF or IDREFS attributes.

Example 1. Figures 2 (a) to (c) show examples of inconsistencies of types i
through iii, and their intervals. In Figure 2(a) II = [T4,Now]; in Figure 2 (b)
II = [T2, T4]; in Figure 2 (c) there is a cycle in every snapshot within the interval
II = [T4, T6].

Checking Consistency. Inconsistencies of types i and ii are checked using the
function lifespan(n), that, given a node n computes its lifespan. For inconsisten-
cies of type i, the algorithm checks, for each edge e, if Te is in lifespan(n). If there
is an inconsistency of type ii, lifespan(n) returns null. It can be shown that the
lifespan of a node can be computed with an order O(degin(n)∗ log(degin(n))),
where degin(n) is the number of edges incident to n. In the worst case (where
all edges in the graph are incident to the node), the order of the algorithm is
O(|E| ∗ log(|E|); in the average case (all nodes have the same number of in-
coming edges, i.e. |E|

|V | ), this reduces to O( |E|
|V | ∗ log( |E|

|V | ). In the best case (when
each node has only one incoming edge) the lifespan is computed in constant
time.

Inconsistencies of type iii are checked (with order O(|E| + |V |)) using the
following proposition.
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Fig. 2. (a) Inconsistency of type i; (b) Inconsistency of type ii; (c) Inconsistency of
type iii

Proposition 1. Let D be a Temporal XML document where every node has at
most one incoming containment edge in every time instant t; if there is a cycle
in some interval II in D, then, there exists a node ni such that Tmcp(ni) �=
lifespan(ni), where Tmcp(ni) is the temporal interval of the mcp between the
root and node ni.

Definition 4 (Deleting edges). Let D be a Temporal XML document, and let
e be a containment edge e(ni, nj , Te). We define three different kinds of deletion
of containment edges: (1) Physical Delete of an edge e is the deletion of e during
all the edge’s lifespan. (2) Delete e in an instant t ∈ Te, with three variants:
(a) Physical delete e, if Te.FROM = Te.TO = t; (b) make Te.TO = t − 1, if
Te.TO = t∧Te.FROM < t; (c) make Te.TO = t+1, if Te.TO = t∧Te.FROM >
t; (d) Create a duplicate of nj at instant t, and delete e in t (see below) if
Te.FROM < t < Te.TO. (3) Delete e in an Interval I is the deletion of the edge
e for each instant t, t ∈ I ∩ Te.

Duplication of a node n at instant td is performed as follows: (1) create a new
node nc, and, for all edges ej(n, ni, Tej

) outgoing from n, create a new edge
ek(nc, ni, Tej

); (2) delete (following Definition 4), all edges outgoing from n, for
all instant t ≥ td; (3) delete all edges outgoing from nc, for all instant t < td;
(4) for each edge ei(ni, n, Tei

) incident to n such that Tei
.TO ≥ t create a new

edge en(ni, nc, Tni
) with Tni

.FROM = t if t ∈ Tni
, and Tni

= Tei
otherwise; (5)

finally, delete all edges ei in the interval [t, Tei
.TO] if t ∈ Tei

. It can be shown
node duplication can be performed in O(degout(n) + degin(n)) ≈ O(|E|) time.

The first kind of deletion in Definition 4 is a physical deletion, that is, the
whole edge disappears. The second kind of deletion has different flavors. If the
edge is deleted in an instant that corresponds to a boundary of it interval of va-
lidity (Te), this boundary is incremented (decremented) in one time unit. Finally,
if the edge is deleted in an instant inside Te, the target node of the edge is split
into two, as explained above. Deletion during an interval is just a straightforward
generalization of the above.
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Fig. 3. Inconsistency of type i

Definition 5 (Temporal Label Expansion and Reduction). Given a con-
tainment edge e(ni, nj , Te), an expansion of Te to an instant t is performed
making Te.TO = t, if t > Te.TO, and Te.FROM = t, if t < Te.FROM .

Analogously, reducing the temporal label Te to an interval T ′ ⊂ Te implies
deleting e in the intervals [Te.FROM, T ′.FROM − 1], [T ′.TO + 1, Te.TO].

Given two intervals T1 and T1, if T1.TO > T2.TO we will say that T1 is greater
than T2, denoted T1 � T2. Analogously, if T1.TO < T2.TO, we say that T1
precedes T2, denoted T1 ≺ T2.

Definition 6 (Youngest (Oldest) Incoming Edge). Wewill denote youngest
edge incoming to a node n, ye(n), an edge whose temporal label is the largest (accord-
ing to the definition above) among all the temporal labels of the edges incoming to n.
Analogously we define the oldest edge incoming to a node n, oe(n), as an edge whose
temporal label is less than the labels of all the other edges incoming to n.

Fixing Inconsistencies of Type i. We study two ways of fixing the prob-
lem: (a) correction by expansion; and (b) correction by reduction. Correction by
expansion expands the lifespan of the inconsistent node until it covers the violat-
ing interval; for this task, if II � lifespan(n), ye(n) (i.e., the youngest incoming
edge) is chosen for expansion; if lifespan(n) � II , oe(n) is chosen. The problem
with this solution is twofold: on the one hand, we do not really know if the
containment relation actually existed in the new interval. An expert user will be
needed to define this. On the other hand, the expansion may introduce a cycle
(i.e., an inconsistency of type iii). In this case, expansion will not be a possible
solution. Correction by reduction shrinks the temporal label of the inconsistent
edge, in order to close II . The main idea here is to modify the temporal label
of the inconsistent edge, in order that it lies within the lifespan of the starting
node of such edge. Although no cycle can be introduced by this solution, new
inconsistencies of type i may appear in the ending node of the modified edge,
if this node has outgoing edges that cover the interval that has to be reduced;
moreover, inconsistencies of type ii may also be introduced if the deleted interval
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was not in one of the lifespan’s extremes. Finally, note that reduction can be
propagated downward in cascade.

Example 2. Figure 3(a) shows an inconsistency of type i at node n2, where
II = [51, 60]. A correction by expansion will expand the youngest edge incom-
ing to n2, resulting in a new label [31, 60]. Note that an expansion may recur-
sively propagate the inconsistency upward in the path, until a consistent state
is reached. In the same example, the correction by reduction approach would
generate new inconsistencies of type i and ii. Reducing to [20,50] the interval
of the edge (n2, n3) in Figure 3 (a), introduces a gap in node n3. In the case
of Figure 3 (b), the same correction will make the temporal label of the edge
(n3, n4) lie outside the lifespan of node n3.

Fixing Inconsistencies of Type ii. In this case we have two possibilities: (a)
there is an overlapping of some of the temporal labels incoming to a node; (b)
the union of the temporal labels of the edges incoming to a node presents a gap.

For fixing overlapping it suffices just to delete one of the violating edges
in the interval of inconsistency. Closing the gaps has more than one possible
solution: (a) physically delete all incoming edges occurring after the gap (i.e.,
with temporal labels starting after the gap); (b) expand the temporal labels of the
edges, in order to close the gap (this could be performed expanding the temporal
labels of one or more of the edges involved); (c) duplicate the violating node
in a way such that the resulting incoming and outgoing edges have consistent
temporal labels. The first two options may introduce new inconsistencies of type
i (for example, if the violating node is n, there is an edge e(ni, n, Te), and Te is
expanded to T ′

e, the latter label may be outside the lifespan of ni). The third
option requires the node created to be semantically equivalent and syntactically
consistent. Fixing inconsistencies of type ii can be done in O(|E|)2 time [15].

Fixing Inconsistencies of Type iii. Inconsistencies of type iii involve cycles
occurring in some interval(s) of the document’s lifespan. In this case, again, we
have more than one possible way of fixing the inconsistency, basically consisting
in deleting (according to Definition 4) edges within the cycle. We may (a) delete
all containment edges involved in a cycle during the inconsistency interval II

(i.e., the interval when the cycle occurs); or (b) delete (within the interval of
inconsistency) one of the edges in the cycle. Given that this would introduce an
inconsistency of type i, this solution is only possible if there is at least one node
n in the cycle with more than one incoming containment edge ec(ni, n, Te), such
that Te lies outside II . Thus, besides deleting the edge, Te must be expanded in
order to prevent introducing a new inconsistence.

5 Interaction Between Inconsistencies

So far we have studied document inconsistencies isolated from each other. In a
real-world scenario, it is likely that more than one inconsistency appears in a
document. In this section we tackle this problem. First, we need some definitions.
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Definition 7 (Expansion paths). We denote youngest parent of a node n,
the origin node of ye(n). The oldest parent of a node is the origin node of oe(n).
A path of oldest (youngest) parents between two nodes ni, nj is a path where
each node is the youngest (oldest) parent of the next node in the path. We will
denote these paths expansion paths.

Definition 8 (Area of Influence). We will call Area of Influence of an in-
consistency I, denoted Ainf (I), the union of all the nodes affected by the possible
solutions to the inconsistencies studied in Section 4. An affected node is a node
changed as a consequence of fixing an inconsistency, i.e., a node such that (a)
an incoming or outgoing node was deleted; (b) a temporal label of an incoming
or outgoing edge was expanded or reduced.

For an inconsistency I of type i, the Area of Influence of I is the set of nodes
composed of: the inconsistent node n, all the nodes in the expansion paths of n,
and all the nodes ni in the document such that there is a continuous path from
n to ni during IIi

(the interval of inconsistency of I).
The Area of Influence of an Inconsistency of type ii is only composed of the

inconsistent node n. Given that the solution for this kind of inconsistency is the
duplication of the node, only the edges are affected (and a new node will be
created).

The Area of Influence of an Inconsistency of Type iii during an Interval of
Inconsistency II is composed of: (a) all the nodes ni in the cycle (corresponds to
the solution of deleting all nodes in the cycle); (b) all nodes nj such that there
is a continuous path from ni to nj with interval T ⊇ IIiii

(a consequence of the
above); (c) all the nodes in the expansion path of each node in the cycle, with
temporal label less than II ; (corresponds to the solution of deleting only one
edge in the cycle).

Example 3. Figure 4 (a) shows an example of an inconsistency of type i over node
n3. The possible solutions are, as we have seen before, correction by reduction
or by expansion. The former affects all nodes belonging to a path with origin in
n3, in the interval [t3, t10] (i.e., n4 and n6). Expansion would affect all nodes in
the path of youngest parents of n3, i.e, n2 and n1. Then, the area of influence is
the set: {n1, n2, n4, n6, n3}.

Figure 4 (b) depicts the area of influence of a cycle between nodes n2, n3, n4
and n5. If all of them are deleted, node n7 will also be affected, because it is
reached from n3 within the cycle’s interval. In fact, all nodes, except n2 will be
physically deleted. Deleting only the ending node of one inconsistent edge in the
cycle implies deleting node n2 (we delete e(n5, n2, T52)), expanding the intervals
of the path of youngest parents of n2, i.e., n1 is also affected.

If more than one inconsistency appears in a temporal XML document, the order
in which we solve them will have an impact on the document that we will finally
obtain. We would like to identify, at low cost, sets of inconsistencies that do
not interfere with each other. In this case, we would be able to fix them in any
order, and the result will be the same. The notion of area of influence allows us
to identify such sets.
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Fig. 4. Inconsistencies of Types i and iii - Area of influence

Intuitively, given any pair of inconsistencies (of any type), I1 and I2, we say
that I1 and I2 interfere with each other if their areas of influence have non-empty
intersection. Conversely, if Ainf (I1) ∩ Ainf (I2) �= φ, we say that I1 and I2 are
isolated from each other. Given a set of n inconsistencies I1, ..., In, we denote
the set composed of the nodes in Ainf (I1) ∩ Ainf (I2)... ∩ Ainf (In), the Area of
Interference of I1, ..., In, denoted Ai(I1, I2, ...In)

Definition 9 (Classification of Interferences). Given a set of inconsisten-
cies I = {I1, ..., In} such that Ainf (I1) ∩ Ainf (I2)... ∩ Ainf (In) �= φ we denote
their interference Irrelevant if we can fix them in any order and obtain the same
result (i.e., everything happens as if they were isolated). On the contrary, if this
property does not hold, we denote the interference relevant.

Example 4. Figure 5 (a) shows two irrelevant inconsistencies of type ii over the
same node. In both cases, the solution will be node duplication. However, it is
easy to see that the result will be the same, no matter which one we address in
the first place. Figure 5 (b) shows a cycle interfering with an inconsistency of
type i. The cycle cannot be corrected by expansion because it involves nodes in
the potential path of youngest parents of the inconsistency of type i.

In what follows, we will study the conditions that state when an interference
is irrelevant. Detecting irrelevant interferences through the propositions below,
constitutes the basis of an efficient solution to the problem of fixing a document
with multiple temporal inconsistencies. We will not address relevant interferences
in this paper.

Irrelevant Interferences. In the propositions below, we will be using a simple
metric, namely the number of changes needed to fix an inconsistency, where a
change could be: (a) the expansion of an interval; (b) the reduction of an interval;
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(c) the duplication of a node; (d) the physical deletion of an edge. For simplicity,
we give the same weight to each change. We denote this metric κ. When there
is more than one possibility for fixing an inconsistency, this metric will define
which method we will use (i.e., the one with the smallest κ). In particular, in
Section 4 we proposed two methods for fixing inconsistencies of type i: correction
by expansion and correction by reduction. We denote κr and κe the number of
changes required by a correction by reduction and expansion, respectively.

Definition 10 (Expansion Area). We call Expansion Area of an inconsis-
tency I, denoted Ae(I) the set of nodes belonging to the expansion path(s) that
compose the Area of Influence of I. Analogously, we call the Reduction Area
of I, denoted Ar(I) the set of nodes in all the mcps that compose the Area of
Influence of I. It follows that, for inconsistencies of types i and iii, Ainf (I) =
Ae(I) ∪Ar(I).

Proposition 2. Let I1, I2 be two inconsistencies of type i, with intervals T1 and
T2, respectively. If Ae(I1) ∩ Ar(I2) = Ae(I2) ∩ Ar(I1) = φ, then, I1 and I2 can
be solved by expansion, in any order.

Now, we will give a set of propositions that allows us to determine if two incon-
sistencies occurring in the same document are irrelevant or not. We will address
all possible combinations of inconsistencies, starting from concurrent inconsis-
tencies of the same kind. For the sake of space will only give the proof of some
of the propositions.

Proposition 3 (Inconsistencies of type i). Let I1, I2 be two inconsistencies
of type i, with intervals T1 and T2, respectively. Their interference is irrelevant
if at least one of the following holds:
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a. κr(I1) < κe(I1) ∧ κr(I2) < κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
b. κr(I1) > κe(I1) ∧ κr(I2) > κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
c. Ai(I1, I2) = Ar(I1) ∩ Ar(I2) ∧ T1 ∩ T2 = φ.
d. Ai(I1, I2) = Ae(I1)∩Ar(I2)∧T1 ≺ T2 (for a path of youngest parents,T1 � T2

for a path of oldest parents)

Condition (a) means that the number of changes needed to fix each inconsistency
by reduction is less than the number of changes required to fix it by expansion,
and the expansion area of one of them does not intersect with the expansion
area of the other. Condition (b) is analogous.

Proof. Condition a. If the interference is not irrelevant, fixing one inconsistency
would affect the remaining one. Suppose we fix I1 and I2 in that order. We know
that κr(I1) < κe(I1), so we must choose reduction for I1. This implies that
the number of changes required for I2 can never be increased by this process,
because Ar(I1) ∩ Ae(I2) = φ. Thus, reduction will be the also the choice for I2.
We arrive to the same conclusion following the order I2, I1. Thus, the interference
is irrelevant.

Condition b. Again, suppose we fix I1 and I2 in that order. We know that
κr(I1) > κe(I1), so we must choose expansion for I1. This choice can never
increase the number of changes that will be produced expanding I2. Thus, I2
will also be fixed by expansion. Moreover, the expansion path remains the same.
Thus, the interference is irrelevant.

Condition c. If the order is I1, I2, and I1 is corrected by expansion, the solution
for I2 is not changed because Ae(I1) is not in the area of interference. I1 is
corrected by reduction Ar(I2) and Ae(I2) remain unchanged. This is also true
for the order I2, I1.

Condition d. If the order is I1, I2, and we correct I1 by reduction, the nodes in
Ar(I2) are not affected because Ar(I2) �∈ Ai(I1, I2). If I1 is fixed by expansion,
the nodes in Ar(I2) are not affected because T1 ≺ T2, and can only be expanded
to T1.TO, they are not modified in the interval of inconsistency of I2. The same
occurs if the order is I2, I1.

Proposition 4 (Inconsistencies of type ii). Let I1, I2 be two inconsistencies
of type ii, with intervals T1 and T2, respectively. Their interference is always
irrelevant unless I1 and I2 are both overlappings with a common edge, such that
the intersection between the time labels of all edges involved is not empty.

Proposition 4 states that the only case when the two inconsistencies interfere in
a relevant fashion is when, given three edges incident to a node (i.e., there is a
common edge), e1(n1, n, T1), e2(n2, n, T2), e3(n3, n, T3), it holds that T1∩T2 �= φ,
and T1 ∩ T3 �= φ.

Proof. We have four possibilities: (1) I1 and I2 are gaps over a node n; (2) I1
and I2 are overlappings not involving a common edge; (3) there is a common
edge (i.e., I1 and I2 involve just three edges; (4) I1 is a gap and I2 is an overlap.

Case (1). Let lifespan(n1) = [T1, T2] ∪ [T3, T4] ∪ [T5, T6], with T2 <
T3 − 1, T4 < T5 − 1. Solving I1 creates a new node n1c, such that we will have
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lifespan(n1) = [T1, T2], and lifespan(n1c) = [T3, T4]∪ [T5, T6]. Clearly, fixing I2
will only affect n1c. The same occurs if we first fix I2.

Case (2). Let e1(ni, n1, T1), e2(nj , n1, T2), e3(nk, n1, T3), e4(nl, n1, T4) be edges
such that T1∩T2 �= φ ∧ T3∩T4 �= φ ∧ T1∩T2∩T3∩T4 = φ; also, e1 �= e2 �= e3 �= e4.
Fixing the first inconsistency, one of the two edges in the intersection interval.
This, clearly, does not affect the remaining inconsistency, and the interference is
irrelevant.

Case (3). Let e1(ni, n1, T1), e2(nj , n1, T2), e3(nk, n1, T3), be edges such that
T1 ∩ T2 �= φ ∧ T2 ∩ T3 �= φ ∧ T1 ∩ T3 = φ. If T2 is reduced in one of the
inconsistencies, the other one is not affected. As we did not assume any order,
this happens when choosing the orders I1, I2 or I2, I1.

Case (4). It is clear that a gap and an overlap cannot occur during the same
interval. If we first fix the gap (via node duplication), the overlap will remain in
one of the nodes and will be fixed as if the gap never existed. If we, instead, fix
the overlap first, the gap will not be affected. Thus, the interference is irrelevant.

Now we will address cycles (inconsistencies of type iii). In Section 4 we presented
two solutions to the problem of fixing a cycle: (a) removing all edges in the cycle,
which implies changing the lifespan of the nodes in the cycle, and may produce
new inconsistencies of type i and ii, that will be fixed by reduction and node
duplication, respectively. All the nodes affected belong to the reduction area of
the inconsistency. Thus, in what follows we will denote this solution, correction
by reduction, like in Section 4. Analogously, solution (b) (removing one edge in
the cycle, if possible), potentially generates an inconsistency of type ii, and, as it
was explained, an inconsistency of type i, which are corrected by expanding the
intervals of one of the edges. Thus, all of the affected nodes are in the expansion
area of the inconsistency, and we will also denote this solution correction by
expansion.

Proposition 5 (Inconsistencies of type iii). Let I1, I2 be two inconsistencies
of type iii, with intervals T1 and T2, respectively. Their interference is irrelevant
if at least one of the following holds:

a. κr(I1) < κe(I1) ∧ κr(I2) < κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
b. κr(I1) > κe(I1) ∧ κr(I2) > κe(I2)∧ Ae(I1) ∪ Ar(I2) = Ae(I2) ∪ Ar(I1) = φ
c. Ai(I1, I2) = Ae(I1) ∩ Ar(I2) ∧ T1 ≺ T2.
d. Ar(I1, I2) = Ar(I1) ∩ Ar(I2) ∧ T1 ∩ T2 = φ.
e. Let n1 be the only node belonging to the cycle in I1. Then, (Ae(I2)∩Ar(I1) =

n1 ∨ (Ae(I2) ∩ Ar(I1) = φ) ∧(Ar(I2) ∩ Ae(I1) = φ ∧ T1 ∩ T2 = φ)

Conditions (a) and (b) are analogous to the ones in Proposition 3, considering
the definition of correction by reduction and correction by expansion for incon-
sistencies of type iii. Condition (e) means that the only node in the Area of
Interference is a node belonging to I1, is in the reduction area of I2 but not in
the expansion area of I2, and the inconsistency intervals are disjoint.

Proof. (sketch) For conditions (a) and (b), the proofs are similar to Proposition
3. For condition (c) the proof is based on showing that, for instance, for the
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order I1, I2, reduction for solving I1 does not affect the nodes in Ar(I2), because
Ar(I1) �∈ Ai(I1, I2). Expanding, instead, affects the nodes in Ar(I2), but there
is no node added to or deleted from Ar(I2), because T1 ≺ T2. We proceed anal-
ogously for the order I2, I1. The proof of condition (d) has a similar mechanism:
expanding does not affect, because the expansion areas are not in the area of
interference. Eliminating a cycle (reduction) of I1 (I2) affects the nodes in Ar(I2)
(Ar(I1)), but in different intervals (because T1 ∩ T2 = φ.) The idea is analogous
for condition (e).

Proposition 6 (Inconsistencies of types i and ii). Let I1, I2 be two incon-
sistencies of types i and ii, respectively, with intervals T1 and T2. Their inter-
ference is irrelevant if one of the following holds:

a. I2 is in the reduction area of I1, and I2 is not an overlapping or T2∩T1 = φ.
b. If I2 is a gap, it occurs on a node in the expansion area of I1 (i.e., Ai(I1, I2) =

Ainf (I2)), and T2 ∩ T1 = φ.

Proposition 7 (Inconsistencies of types i and iii). Let I1, I2 be two in-
consistencies of types i and iii, respectively, with intervals T1 and T2. Their
interference is irrelevant if one of the following holds:

a. The number of changes needed for performing correction by reduction of I1
and I2 is less than the number of changes needed for performing correction
by expansion over the same inconsistencies, and their areas of expansion
and reduction have an empty intersection.

b. The number of changes needed for performing correction by expansion of I1
and I2 is less than the number of changes needed for performing correction
by reduction over the same inconsistencies, and their areas of expansion and
reduction have empty intersection.

c. If there is n in I1 belonging to Ar(I2), then T1 ∩ T2 = φ.
d. If there is n in I2 belonging to Ae(I1), then T1 ∩ T2 = φ.

Proposition 8 (Inconsistencies of types ii and iii). Let I1, I2 be two in-
consistencies of types i and iii, respectively, with intervals T1 and T2. Their
interference is irrelevant if I1 is a gap, and the node where it occurs is not in
the expansion path of I2.

6 Conclusion

We have studied the problem of validating a set of temporal constraints in a tem-
poral XML document, based in the data model presented in [12]. We proposed
methods for checking the presence of inconsistencies in a document, and fixing
them. We studied individual and combined inconsistencies, and state a set of con-
ditions that make irrelevant the interference between them (i.e., each one can
be treated and fixed independently from any other one). These conditions can
be incorporated into algorithms for efficiently performing the fixing procedure.
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This work can be a good starting point for studying and reasoning about tem-
poral constraints with indeterminate dates, of the types presented in [6,9].
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Abstract. We extend a recently proposed model checking-based algo-
rithm for the evaluation of XPath queries with a cache strategy to store
the results of the (most frequently) asked queries and to re-use them at
occurrence. We experimentally show that, as soon as the cache is warm,
the proposed optimization is quite effective. We complement our pro-
posal with a broad experimental comparison of different strategies for
XPath query processing.

1 Introduction

The XML Path Language version 1.0 (XPath, in the following), is a query lan-
guage for XML documents proposed in 1999 by the World Wide Web Consor-
tium(W3C) [1]. Compared to some later proposals of the W3C, like XPath 2.0 [2]
and XQuery [3], the XPath language, and in particular its navigational fragment,
or Core XPath [4], is simple, clean, and intuitive. As a result, XPath has become
very popular among XML users and many software houses have extended their
products with XPath tools. Moreover, researchers in both the computational
logic and the database communities devised quite a large number of solutions for
the evaluation of XPath queries, including tree traversal methods [4,5,6], model
checking-based methods [7,8,9], automata-based methods [10,11,12], join-based
methods [13,14,15], and sequence matching-based methods [16,17]. However, we
are aware of few papers that aim to compare the relative performance of such
algorithms ([18] compares join-based and sequence matching-based methods,
while [19] evaluates XML indexes for structural joins).

This paper gives two contributions. We extend the above list of evaluation
methods with a logic-based approach to answer XPath queries with the aid of
cache mechanisms. Moreover, we make a thorough experimental comparison of
the following four evaluation techniques for XPath:

TopXPath (Section 8.1 of [4]). The idea that lies behind this algorithm is to
rewrite the original query into aBoolean combination of filter-free paths (sequences
of steps without filters). The evaluation of the filter-free path is performed by read-
ing the path string from left to right and sending the output of the current step to
the input of the next step, if any. For instance, consider the query:

S. Amer-Yahia et al. (Eds.): XSym 2006, LNCS 4156, pp. 46–60, 2006.
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π[φ] = /child :: site/child :: regions[descendant :: item/following :: payment]

The method works in two phases. First, the query filter φ is rewritten by reading
it from right to left and inverting each axis. The inverted filter becomes:

ϕ = self :: payment/preceding :: item/ancestor :: ∗

Then, the above query is evaluated as π ∩ ϕ, that is, by taking the intersection
of the result of π (with the singleton containing the tree root as initial con-
text set) and the result of ϕ (with the set of all tree nodes as initial context
set).

BottomXPath ([9]). The idea here is to rewrite the original query into a modal
formula and then evaluate the formula bottom-up, that is, each formula is evalu-
ated after the evaluation of its subformulas. As an example, consider again the
above query π[φ]. The corresponding modal formula is:

regions ∧ 〈parent〉(site ∧ 〈parent〉root) ∧ 〈descendant〉(item ∧ 〈following〉payment)

where tags are interpreted as atomic propositions (root is a propostion that is
true exactly at the tree root) and each axis is simulated by a corresponding
modality. The modal formula is evaluated bottom-up exploiting the fact that
the truth value of any subformula can be computed from the truth values of its
direct subformulas.1

CacheBottomXPath. This is a cache optimization of BottomXPath that we
propose and evaluate in this paper (see Section 2 for the details). The query is
first converted into a modal formula and then chopped into a set of subformulas.
Then, each subformula, in bottom-up order, is searched in the cache. If the
subformula is found, no evaluation is performed, since the result has been already
computed. Otherwise, the subformula is evaluated and its result is possibly stored
in the cache.

Arb ([12]). This is an automata-based method. The XML document is first
converted into a binary tree representation. Then, two deterministic binary tree
automata, one working bottom-up and the other one working top-down, are gen-
erated from the query. The actual evaluation is performed in two steps: (i) first,
the bottom-up query automaton runs on the XML binary tree; (ii) then, the
top-down query automaton runs on the XML binary tree enriched with infor-
mation computed during the bottom-up run. Finally, the entire XML document
is returned with selected nodes marked up in XML fashion.

An analysis of the worst-case computational complexity of the above four
methods does not help much to determine the most efficient evaluation strategy.
Let us focus on the navigational part of XPath known as Core XPath [4], which
is supported by all the above methods. Let k be the query complexity and n be
1 This bottom-up principle holds for many modal and temporal logics. A notable

example is Computation Tree Logic (CTL), a popular specification language in the
context of formal verification of software and hardware systems [20].
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the data complexity. On Core XPath, the worst-case complexity of TopXPath,
BottomXPath, and CacheBottomXPath is O(k · n), while Arb terminates in
O(K +n), where K is an exponential function of k. A closer look inside the four
algorithms reveals the following. In order to solve a query of length k on a tree
of size n it happens that: (i) TopXPath visits each tree node a number of times
between 0 and k (each node might be visited a different number of times) (ii)
BottomXPath visits each tree node exactly k times; (iii) CacheBottomXPath
visits each node the same number of times between 0 and k and it spends extra
time proportional to the cache loading factor in order to search into the cache;
and (iv) Arb visits each tree node twice (independently on the query complexity)
and it spends extra time that might be exponential in k in order to build the
tree automata. All the algorithms spend a constant amount of time at each node
but BottomXPath (and its cache-based version) is particularly efficient since it
operates mostly on Boolean values.

To have a better understanding of the relative performance of the methods
under testing, we conducted a probing experimental evaluation on synthetic and
simulated real data. The main goals of our investigation are: (i) to understand
the effectiveness of the cache optimization introduced in CacheBottomXPath;
(ii) to compare the performance of the top-down and bottom-up approaches im-
plemented in TopXPath and BottomXPath, respectively, on randomly generated
data, and (iii) to test the scalability of the automata-based method encoded in
Arb when the query length grows. In particular, is the automata construction
step a bottleneck for query processing in Arb?

The rest of the paper is as follows. In Section 2 we review BottomXPath
and describe CacheBottomXPath. The results of our experimental evaluation
are discussed in Section 3. We conclude in Section 4.

2 XPath Evaluation Methods

Even if the algorithms mentioned in Section 1 work on, or can be easily extended
to, full XPath, we will evaluate them on the navigational fragment of XPath, or
Core XPath, that was defined in [4]. With respect to full XPath, this fragment
disallows the axes attribute and namespace, node tests different from a tag or
*, comparison operators and functions. What remains can be used to navigate
the XML tree only. The algorithms that we test essentially differ only on this
fragment.

As noticed in [21], Core XPath can be viewed as a Modal Logic, inter-
preted over tree structures, whose modalities behave like the XPath axes. Modal
Logic [22] extends Propositional Logic with modalities that, similarly to XPath
axes, are used to browse the underlying relational structure. Let Σ be a set
of proposition symbols. A formula in the multi-modal language is defined as
follows:

α = p | α ∧ α | α ∨ α | ¬α | 〈Ri〉α
where p ∈ Σ and 1 ≤ i ≤ c for some integer c ≥ 1. A multi-modal logic for
XPath contains a propositional symbol for each XML tag and a modality 〈X〉
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for each XPath axis X. Modal formulas are interpreted at a given state of a given
model in the usual way [22]. E.g., 〈X〉α is true at state s iff there exists a state
t reachable from s through the relation X such that α is true at t. The truth set
of a formula α w.r.t. a model M is the set of states of M at which α is true.2

We refer to [4] (Section 8.1) and [12], respectively, for a complete description
of TopXPath and Arb. In the rest of this section, we review BottomXPath [9]
and we introduce CacheBottomXPath. BottomXPath inputs an XML tree T and
a Core XPath query q and returns the answer set for q with respect to T in the
following two steps:

BottomXPath(T, q)
1: translate q into a modal formula αq;
2: retrieve the truth set of αq w.r.t. T ;

The translation of step 1 works as follows. Each tag is mapped to a corresponding
proposition symbol and * is mapped to the truth value true. Moreover, a new
proposition root is introduced to identify the tree root. The query path is read
from right to left and each axis (not belonging to a filter) is mapped to the
modality corresponding to the inverse of the axis. Finally, each query filter is
translated by reading it from left to right and by mapping each axis to the
corresponding modality and each Boolean operator to the corresponding Boolean
connective. For instance, the query:

/child::a[parent::b/following::c]/descendant::d[preceding::e or not(following::*)]

is mapped to the formula:

d ∧ 〈ancestor〉(a ∧ 〈parent〉root ∧ 〈parent〉(b ∧ 〈following〉c))∧
(〈preceding〉e ∨ ¬〈following〉true)

The truth set of the resulting modal formula (step 2 of BottomXPath) is com-
puted by the procedure XPathCheck as follows. XPathCheck inputs an XML
tree T and an XPath modal formula α and returns the truth set for each sub-
formula of α (including α itself) in document order. The algorithm is similar
to the model checking procedure for the temporal logic CTL, a popular specifi-
cation language in the context of finite-state program verification [20]. We first
describe the data structures used by the algorithm. XPathCheck takes advan-
tage of a Boolean matrix A, where the rows represent formulas and the columns
represent nodes, in order to label nodes with formulas that are true at them.
Initially, each entry of A is set to 0. For each subformula of α numbered with i
and each node of T numbered with j, the procedure sets A[i, j] to 1 if and only
if the formula i is true at the node j. Moreover, XPathCheck stores the tree T
as a set of linked objects each of them representing a tree node. Each object
contains a field with the preorder rank of the node, a field containing the XML
tag of the element that the node represents, and pointers to the parent, first
child, right and left siblings nodes. Finally, XPathCheck represents the formula

2 In computational logic, the problem of finding the truth set of a formula is well-
known as the (global) model checking problem [20].
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α as its parse tree PTα. Each node of PTα represents a subformula β of α and
it is stored as an object containing a field with the main operator of β, a field
containing the index of the corresponding row in A, and pointers (at most 2)
to the argument nodes of the main operator of β. It is convenient to insert in
A the subformulas of α in postorder with respect to a visit of PTα (so that the
subformulas of α can be scanned bottom-up) and the nodes of T in preorder
with respect to a visit of T (so that each truth set is sorted in document order).

XPathCheck works as follows. Given a tree T and a formula α, it processes
each subformula β of α by visiting the parse tree PTα in postorder. In this way,
each subformula of β is checked before β itself is verified. The verification of β
depends on the its main operator:

1. if β is root, then XPathCheck sets A(β, 1) to 1 (the first column of A is
associated to the tree root);

2. if β is *, then XPathCheck sets A(β, j) to 1 for each node j;
3. if β is a tag a, then XPathCheck sets A(β, j) to 1 for each node j tagged

with a;
4. if β is β1 ∧ β2, then, for each node j, XPathCheck sets A(β, j) to 1 if

A(β1, j) = 1 and A(β2, j) = 1 (and similarly for the disjunction and negation
cases)3;

5. if β is 〈X〉β1, then, for each node j, XPathCheck sets A(β, j) to 1 if there
exists a node k reachable from j trough the relation induced by X such that
A(β1, k) = 1.

The check of subformulas of the form 〈X〉β1 depends on the axis X. In general, it
is a tree searching algorithm that possibly labels nodes with 〈X〉β1. For instance,
if the axis is descendant, then the procedure first retrieves the nodes labelled
with β1 and then it labels each ancestor of such nodes with 〈descendant〉β1
if the ancestor is not already labelled with it. Notice that, for each axis X,
the formula 〈X〉β1 can be checked by visiting each tree node only a constant
number of times, hence in linear time with respect to the number of nodes of
the tree. Moreover, most of the operations are performed on Boolean values. It
follows that XPathCheck runs in time proportional to the product of the formula
length and the XML tree size. Since the mapping from queries to formulas (step
1 of BottomXPath) takes linear time and the resulting formulas have linear
lengths with respect to the lengths of the input queries, we can conclude that
BottomXPath runs in O(k · n), where k is the query length and n is the XML
tree size.

2.1 Cache Answerability for XPath Queries

BottomXPath repeats the computation of the truth set for each instance of the
same subformula. This can be avoided as follows. Both a formula cache M ,
3 Notice that the matrix entries for β1 and β2 are known when β is processed, since

β1 and β2 are subformulas of β and hence their postorder ranks in the parse tree are
smaller than the postorder rank of β.
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storing the past formulas, and a truth set cache A, storing the truth sets for past
formulas, are maintained. When a new formula is checked, first the formula is
searched in M . If the formula is found, then no further processing is necessary.
Otherwise, the sub-formulas of the original formula that are not present in M
are added to M and their truth sets are computed and added to A.

We now describe the optimization in more detail. Consider a formula α. We
represent α with its parse tree PTα and the truth set cache with a Boolean matrix
A as described above. The new entry is the formula cache that is implemented
using a hash table M where the keys are the formula strings and the collision
resolution method is by chaining. Each object of the linked lists associated to
the hash table contains the formula string, the index of the corresponding row
in A, and the usual pointer to the next object in the list. The processing of α is
as follows: (a) the parse tree PTα is generated, (b) PTα is visited in postorder
and, for each node (subformula) x, the following steps are done:

1. the formula string s associated to x is built by visiting the tree rooted at x;
2. the string s is searched in the hash table M ;
3. if an object y with key s is found in M , then x is updated with the row index

of the matrix A corresponding to the formula s, which is read from y;
4. otherwise, a new row from A, say l, is assigned to the formula s, a new

object for s is inserted in the hash table with the row index l, the object x
is updated with the row index l, and finally the truth set for s is computed
possibly updating the l-th row of A.

The described optimization is particularly effective in a client/server scenario.
Consider the case of a static XML document on a server and a number of users
ready to repeatedly query the document from remote clients. The server stores
the query answer cache for all the posed queries, while each client stores the cache
for the queries posed locally. It is possible for the same user to pose similar queries
(containing common sub-queries) at different stages. Moreover, it is likely that
different users ask for similar or even for the same query. When a query is posed
on a client, first an answer for the query is searched in the local cache stored on
the client. If the answer is found, then it is returned to the user. Otherwise, the
sub-queries of the original query that do not have a cached answer are shipped
to the server and the answers for them are searched in the global cache stored
on the server. The found answers, if any, are shipped to the client user and the
client cache is updated with them. The missing answers are computed on the
server, the global cache on the server is updated with them, the answers are
shipped to the client user and finally the client cache is also updated. When
the querying is done, the query cache can be stored in secondary memory and
loaded again if the querying restarts.

An important issue involved in the described optimization concerns the cache
maintenance strategy [23]. Such a strategy specifies how to warm-up the cache,
that is, how to populate the cache in advance with queries that are likely to be
frequently asked. Moreover, it specifies when to insert new queries and to delete
old ones from the cache. We did not implement any particular cache maintenance
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strategy in CacheBottomXPath. Indeed, our current goal is to compare high-level
evaluation strategies for XPath. Such an evaluation might hint how to program
an optimized full-fledged evaluator for XPath.

3 An Experimental Evaluation

This section contains the results of our experiments on both synthetic and sim-
ulated real data. We implemented TopXPath, BottomXPath, and CacheBot-
tomXPath in C language, taking advantage of Expat XML document parser
(http://expat.sourceforge.net). We used the Arb implementation that is
available at Christoph Koch’s website http://www.infosys.uni-sb.de/ koch/
projects/arb. We ran all the programs in main memory. We performed our ex-
periments with XCheck [24], a benchmarking platform for XML query engines.
We ran XCheck on an Intel(R) Xeon(TM) CPU 3.40GHz, with 2 GB of RAM,
running Debian Gnu/Linux version 2.6.16. All times are in seconds (or fraction).
Processing a query involves several steps, including parsing the document, com-
piling and processing the query, and serializing the results. The response time is
the time to perform all these steps. We mostly measured the query processing
time (the time spent for the pure execution of the query), which is the most
significant for our purposes. Because of space limitations, this section contains
only a fraction of the experiments and of the data analysis that we performed.
The complete experimental evaluation is available at the website associated to
this paper: http://www.sci.unich.it/~francesc/pubs/xsym06. The website
includes also the source codes of the programs that we implemented for this
paper. We stress that all the experiments that we performed are based on data
(XML documents and queries) and software (query engines and data generators)
that are publicly available and hence they are completely reproducible. We tried
to devise experiments in the spirit of scientific testing as opposed to competitive
testing [25], that is, experiments that allow to draw general conclusions instead
of comparing absolute time values. In the rest of this section we will abbreviate
TopXPath as TXP, BottomXPath as BXP, and CacheBottomXPath as CBXP.

3.1 Experiments on Synthetic Data

This section contains the results of our experiments on synthetic (i.e., artificial)
data. Due to their flexibility, synthetic data are useful to uniformly test specific
capabilities of an engine by using specific benchmarks (also known as micro-
benchmarks [26]). We evaluated the performance of the XPath engines under
consideration while changing the following parameters: data size, data shape,
query length, and query type.

We performed different experiments with different goals. An experiment con-
sists of an input, and output and a goal. The experiment’s goal is what we want
to measure. The experiment’s input is a set of XML documents (data set) and
a set of XPath queries (query set). Finally, the experiment’s output is a set
of results that need to be interpreted with respect to the goal of the experi-
ment. We generated the data set with MemBeR data generator [26]. It allows
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controlling different parameters for an XML document, including tree size, tree
height, and maximum node fanout. As for the queries, they were generated with
XPathGen, a random Core XPath query generator that we implemented for this
paper.4 XPathGen can generate queries with an arbitrary length and with an
arbitrary nesting degree of filters. It allows controlling the following parameters
for a query: length, axes probabilities, and filter probability. The query length
is the number of atomic steps of the form axis::test that the query contains.
Each axis has a corresponding probability of being selected during the query
generation. This allows the generation of queries that are biased towards some
of the axes. Finally, the filter probability controls the filter density in the query
(that is, the number of query filters divided by the query length). This allows
the generation of path-oriented queries (when the filter probability is low) and
filter-oriented queries (when the filter probability is high). It is worth notic-
ing that, in each generated query, each node test is * and the first step of the
query is always descendant::*. As a consequence, it is very unlikely to generate
queries with an empty result. Moreover, the intermediate and final results of the
generated queries are quite large.

We used the documents described in the table below, where the meaning of
the columns is as follows: n is the tree size (the number of tree nodes), avgd is
the average node depth (the depth of a node is the length of the unique path
for the node to the root), maxd is the maximum node depth (the height of the
tree), avgf is the average node fanout (the fanout of a node is the number of
children of the node), and maxf is the maximum node fanout.

doc n avgd maxd avgf maxf doc n avgd maxd avgf maxf
D1 200,000 7.4 8 2.8 5 D5 500,000 12 13 2 61
D2 500,000 4 4 26 35 D6 50,000 6.7 7 4 9
D3 500,000 6.8 7 6 12 D7 5,000,000 6.9 7 8 16
D4 500,000 9.5 10 3 16 D8 100,000 6.8 8 4.6 5

We performed the following experiments:

Experiment E1. With this experiment we tested the engines’ performance
while increasing the filter probability. We set the query length k = 10 and varied
the filter probability p ∈ {0, 0.25, 0.5, 0.75, 1}. Each axis is equi-probable. For
each value of p, we generated 25 queries, ran them against document D1, and
measured the overall query processing time. The results are below:

E1 p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1
TXP 19.03 22.38 23.8 25.79 27.89
BXP 16.13 16.19 16.18 16.19 16.52

CBXP 10.28 8.97 8.51 8.68 10.03
Arb 15.41 14.47 13.96 14.19 14.31

Interestingly, TXP shows worse performance as the query filter density increases.
This can be explained as follows. During query evaluation, TXP separates the
4 The source code is available at the paper website.
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query into paths and filters. Paths are evaluated form the tree root, while filters
are processed with respect to the set of all tree nodes, which is more expensive.
Hence, filter-oriented queries are more difficult for TXP. Independently on the
filter probability, TXP is always the slowest while CBXP is always the fastest.
Arb and BXP are competing.

Experiment E2. With this experiment we tested the engines’ performance
while increasing the query length. We set the filter probability p = 0.25 and
varied the query length k ∈ {5, 10, 15, 20, 25}. All the axes are equi-probable.
For each value of k, we generated 25 queries, ran them against document D1,
and measured the overall query processing time. We also computed the query
scalability factors.5 The results are below (where the columns named qs contain
the query scalability factors with respect to the adjacent query lengths):

E2 k = 5 qs k = 10 qs k = 15 qs k = 20 qs k = 25
TXP 13.65 0.82 22.31 0.94 31.57 0.85 35.95 1.09 48.87
BXP 9.42 0.86 16.25 0.88 21.5 1 28.07 1.03 36.09

CBXP 4.98 0.89 8.89 1.19 12.47 1.01 16.83 1.05 22.07
Arb 14.36 0.55 15.79 1.44 34.2 25.95 1183.41 5.52 8167.5

TXP, BXP and CBXP scale up linearly when the query length is increased.
On the contrary, the performance of Arb is discontinuous, as witnessed by the
query scalability factors. It is almost irrelevant to the query length up to length
10. However, for longer queries, the performance of Arb grows exponentially
in the query length. This can be explained as follows. For long query strings,
the time spent by Arb during the automata construction, which exponentially
depends on the query length, dominates the pure query evaluation time (the
time spent to run the automata), which is independent on the query length.
CBXP shows the best global performance. BXP comes as second, while TXP
and Arb competes up to length 15, where the performance of Arb explodes
exponentially.

Experiment E3. With this experiment we tested the engines’ performance
while changing the document tree shape. We set the query length k = 5 and
the filter probability p = 0.25. All the axes are equi-probable. We generated 25
queries according to these paremeters. As for the data set, we used documents
in the sequence (D2, D3, D4, D5). All the document trees in the sequence have
the same size and vary their shape. In particular, the trees in the sequence move
from wide-and-short to narrow-and-long trees. For each document, we measured
the overall query processing time. The results are below:

5 Given a document D and two queries q1 and q2 of length l1 and l2 respectively, with
l1 < l2, let t1 be the processing time for q1 on D and t2 be the processing time for q2

on D. The query scalability factor, as defined in [27], is the ratio (l1 · t2)/(l2 · t1). If
this factor is smaller than 1 (respectively, equal to 1, bigger than 1), then the engine
scales up sub-linearly (respectively, linearly, super-linearly) when the query length
increases.
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E3 h = 4 h = 7 h = 10 h = 13
TXP 28.45 31.83 34.89 36.41
BXP 19.88 22.45 24.79 25.26

CBXP 10.3 12.11 13.65 13.39
Arb 38.42 38.37 37.74 30.4

Interestingly, TXP, BXP and CBXP perform better on wide-and-short trees,
while Arb gives its best on narrow-and-long trees. Recall that the natural data
model for Arb is a binary tree (arbitrary trees are preprocessed and converted
to binary trees). This might explain why Arb is fastest on structures that are
close to binary trees. Notice that document D5, on which Arb shows the best
performance, has an average fanout of 2. As for global performance, CBXP is
still the fastest. BXP comes as second, while TXP and Arb competes, with Arb
outperforming TXP on narrow document trees.

Experiment E4. With this experiment we tested the engines’ performance
while increasing the document tree size. We set the query length k = 5 and
the filter probability p = 0.25. All the axes are equi-probable. We generated
25 queries according to these paremeters. As for the data set, we used the se-
quence (D6, D3, D7) of documents of increasing size and width. Each document
in the sequence has the same maximum depth and roughly the same average
node depth. For each document, we measured the overall query processing time.
We also computed the data scalability factors.6 The results are below (where
the columns named ds contain the data scalability factors with respect to the
adjacent document sizes):

E4 n = 50,000 ds n = 500,000 ds n = 5,000,000
TXP 3.1 0.93 28.71 0.97 278.8
BXP 2.16 0.96 20.73 0.97 202.06

CBXP 1.22 0.95 11.62 0.98 113.58
Arb 4.28 0.65 27.69 1.06 293.01

Mostly, the scalability of all engines is linear. The sub-linear behavior of Arb
in the first track depends on the time taken to build the tree automata, which is
independent on the tree size. This time is dominated by the pure query processing
time (the time to run the tree automata) in the second track. As for global
performance, CBXP is still the fastest. BXP comes as second, while TXP and
Arb are close.

Experiment E5. With this experiment we tested the engines’ performance
while changing the axes permitted in the queries. We set the query length k = 5,
the filter probability p = 0.25, and varied the set of allowed axes as follows: (a)
all the axes, (b) all the axes but following and preceding, (c) all the vertical axes
(i.e., child, parent, descendant, ancestor), (d) all the forward vertical axes (i.e.,

6 The data scalability factor is defined as for the query scalability factor except for
the fact that it uses the size of the XML tree instead of the length of the query.
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child and descendant). In each case, we generated 50 queries, ran them against
document D3, and measured the overall query processing time. The results are
below:

E5 (a) (b) (c) (d)
TXP 56.33 38.8 37.1 39.86
BXP 40.48 28.35 28.77 29.12

CBXP 18.07 10.07 9.74 7.45
Arb 63.7 46.4 46.33 51.32

The message is clear: for all the engines under testing, following and preceding
axes are the most expensive ones (compare columns (a) and (b)). If we prohibit
these axes, the response time is almost the half. On the contrary, horizontal axes
following-sibling and preceding-sibling are not problematic (compare columns
(b) and (c)). The same for backward vertical axes parent and ancestor (compare
columns (c) and (d)). In any case, CBXP is still the fastest, followed by BXP,
TXP and Arb in this order.

Experiment E6. With this experiment we tested the performance of the cache
optimization introduced in CBXP. We fixed the cache size to 64. We allowed all
axes with the same probability and generated 500 queries by randomly choosing,
for each query, a value for the query length k ∈ {1, 2, . . .10} and for the filter
probability p ∈ [0, 1]. We ran the queries against document D8. The results are
illustrated in Figure 1. The left plot shows the processing times of the different
engines for all the 500 queries. The right plot sums the processing times on adja-
cent intervals of 100 queries. In both plots, from top to bottom, Arb corresponds
to the first (pink) line, TXP to the second (red) line, BXP to the third (green)
line, and CBXP to the fourth (blue) line.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  100  200  300  400  500

Query

TopXPath

BottomXPath

CacheBottomXPath

Arb

 0

 10

 20

 30

 40

 50

 60

401..500301..400201..300101..2001..100

Query interval

TopXPath
BottomXPath

CacheBottomXPath
Arb

Fig. 1. The effectiveness of the cache

As for the effectiveness of the cache optimization, notice that CBXP is almost
3 times faster than BXP and, as expected, its relative performance increases as
more queries are processed. Indeed, the ratios between the processing times of
BXP and CBXP are 2.21, 2.78, 2.83, 2.89, and 3.56 on the 5 consecutive query



A Logic-Based Approach to Cache Answerability for XPath Queries 57

intervals containing 100 queries, and the ratio is 2.77 on the whole query interval.
As for global performance, CBXP is followed by BXP, TXP, and Arb in this
order. If we set to 1 the time spent by CBXP, then the time consumed by BXP
is 2.77, that of TXP is 4.02, and that of Arb is 6.3.

3.2 Experiments on Simulated Real Data

This section contains the results of our experiments on simulated real data. We
generated the documents using XMark data generator XMLGen [28]. It generates
scalable XML documents simulating an Internet auction website. We generated
three documents of increasing size, that we named SmallDoc, MedDoc, and
BigDoc. The table below contains the documents’ characteristics, where s is the
document size in MB (notice that the maximum fanout of the documents is quite
different while the average fanout and the depths are constant):

doc n s avgd maxd avgf maxf
SmallDoc 167,864 11.1 4.55 11 3.66 2,550
MedDoc 832,910 55.32 4.55 11 3.66 12,750
BigDoc 1,666,310 111.12 4.55 11 3.67 25,500

As for the query set, we used a fragment of the XPath benchmark XPath-
Mark [27]. Our benchmark consists of 11 queries, each focusing on a different axis,
with a natural interpretation with respect to XMark documents. For instance,
query Q4 asks for the American items sold in the auction and corresponds the
the XPath query /child::site/child::regions/child::*/child::item[parent::namerica
or parent::samerica]. See the paper website for the full list of queries.

The query processing time spent by each engine to execute the entire bench-
mark on the three documents is shown in following table. The columns named
ds contain the data scalability factor for the adjacent documents:

Engine SmallDoc ds MedDoc ds BigDoc
TXP 0.73 1.01 3.66 0.99 7.28
BXP 1.29 1.02 6.50 0.99 12.93

CBXP 0.72 1.00 3.58 1.00 7.18
Arb 80.84 1.01 404.92 0.93 750.08

TXP and CBXP are the fastest, followed by BXP. Arb is far behind. Hence,
in this case, TXP outperforms BXP. The situation was the opposite on synthetic
data. This behavior is interesting. While the evaluation strategy encoded in TXP
is query-driven, that is, it tries to access only those nodes that will be eventually
selected by the query, BXP, CBXP, and Arb strategies are blind in this respect
and might visit nodes that will not be part of the solution. XPathMark queries
are very selective, that is, their partial and final results are small compared to the
document tree size. On the contrary, synthetic queries have large intermediate
and final results (almost all the tree nodes are always in these sets). Hence,
TXP has a big advantage on selective queries with respect to BXP and Arb.
Nevertheless, exploiting the cache optimization, CBXP still competes with TXP
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on selective queries. An additional cause for the bad performance of Arb on
this benchmark is the shape of XMark documents, which tend to have a large
maximum fanout, while the natural data model for Arb is a binary tree. Finally,
the data scalability of all engines is essentially linear.

The query processing and response times for each query in the benchmark
with respect to MedDoc are depicted in Figure 2. For each query, from left to
right, TXP corresponds to the first (red) bar, BXP to the second (green) bar,
CBXP to the third (blue) bar, and Arb to the fourth (pink) bar. The relative
performance on the other two documents is much similar.
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Fig. 2. Query processing (left) and response (right) times on MedDoc (log scale)

Moreover, the table below shows, for each engine, the minimum (min), maxi-
mum (max), average (mean), and standard deviation (deviation) of the process-
ing times of the benchmark queries with respect to MedDoc. The ratio between
the standard deviation and the mean is given in the last column (stability). This
value is an indicator of the stability of the query response times for an engine.

engine min max mean deviation stability
TXP 0.05 0.60 0.37 0.15 41%
BXP 0.40 0.95 0.53 0.17 32%

CBXP 0.06 0.77 0.32 0.20 62%
Arb 36.25 37.37 36.80 0.40 1%

The analysis per query confirms the above hypothesis about the performance
of TXP and BXP. While TXP neatly outperforms BXP on highly selective
queries like Q1, the performance of the two is comparable on queries with less
selectivity like Q2. As expected, Arb is the most stable and TXP is less stable
than BXP. CBXP is unstable due to the cold cache. We conjecture that CBXP
is very stable if the cache is warm (well populated).

Finally, the effectiveness of the cache is well illustrated in Figure 3. The left
plot refers to BXP and the right one is for CBXP. Notice how the cache opti-
mization smooths the peaks of BXP. This action is more effective as the cache
warms up.
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Fig. 3. The effectiveness of the cache in 3D

4 Conclusion

As mentioned in the introduction, many evaluation methods for XPath have been
proposed. However, few attempts have been made to compare the performance
of these methods. In particular, to the best of out knowledge, this is the first
paper that empirically compares top-down and bottom-up methods for XPath.
Our general conclusions are the following:

1. The cache optimization is effective and should be definitely integrated in an
optimized full-fledged XPath/XQuery evaluator. Of course, a cache mainte-
nance strategy should be adopted.

2. The top-down approach of TopXPath is more efficient than the bottom-up
approach of BottomXPath on queries with high selectivity, while the opposite
is true on poorly selective queries. Natural queries, like XPathMark ones,
tend to be quite selective.

3. The tree automata-based approach implemented in Arb does not scale up
with respect to the query length. When the query is relatively small, the
approach is efficient and in fact the response times are independent on the
query length, as claimed in [12]. However, this does not hold anymore when
the size of the query grows.
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Abstract. Range queries seek the objects residing in a constrained re-
gion of the data space. An XML range query may impose predicates on
the numerical or textual contents of the elements and/or their respective
path structures. In order to handle content and structure range queries
efficiently, an XML query processing engine needs to incorporate effective
indexing and summarization techniques to efficiently partition the XML
document and locate the results. In this paper, we describe a dynamic
summarization and indexing method, FLUX, based on Bloom filters and
B+-trees to tackle these problems. We present the results of extensive
experimental evaluations which indicate the efficiency of the proposed
technique.

1 Introduction

XML has gained wide acceptance as an emerging standard and is being employed
as a key technology for data exchange, integration and storage of semi-structured
data. The XML data model, due to its rich presentation (content and semi-
structuredness), poses unique challenges to effectively support complex queries.
Powerful and flexible query capabilities have been developed [1, 2, 6, 8, 13, 17–19,
21, 23] to extract structural patterns from XML documents. These techniques
are mainly based on the structural join by using some encodings on XML doc-
ument elements. Queries on such ordered XML trees often impose predicates
on the content of ELEMENT labels (keyword search) and/or their corresponding
structural relationships (structural pattern search). These queries require the
presence of some keywords in the document tree along with the conformation of
the keyword instances with some structural patterns, which might be a specific
linear path structure or a subtree/twig structure in the underlying data. For in-
stance, Q = /dblp//article/[2004 ≤ year ≤ 2005] represents such a query with
a linear path structure, which matches all the journal articles published between
year 2004 and 2005 from the dblp [15] bibliography database. In addition, ap-
proximate top-k matching of XML queries were studied in [20].

XML query languages [7, 11] provide support for content-and-structure (CAS)
class of queries. Additionally, full-text keyword search techniques [5] have been
added to XML query languages to support more sophisticated full-text content
retrieval. Furthermore, the XQuery and XPath query languages provide support
� This research was supported by the NSF under IIS-0223022 and CNF-0423336.
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for queries with range predicates which are also one of the fundamental function-
alities supported by general database query processing engines. In this paper,
the class of content-and-structure (CAS) single path queries are extended to in-
clude (i) range predicates over content, as well as (ii) structure predicates and,
furthermore, efficient techniques are proposed for processing them. We refer to
them as XPath range queries.

The efficient evaluation of such XPath range queries is determined by the
choice of an efficient execution and data access plan which is one of the criti-
cal responsibilities of the database optimizer. For instance, consider a possible
query plan for Q where the query engine has to perform the XPath range query Q′

= /dblp//article/[year = 2004 OR year = 2005] to find all the journal articles
published in the year 2004 or 2005. The dblp dataset contains 111,609 instances
of the [/article/year]path structure and only 259 instances of [/year/2005].
That is the [year = 2005] predicate will return 259 instances while the struc-
ture predicate [/dblp//article /year] results in 111,609 instances. Hence, it is
essential to utilize the selectivity1 of the structural elements for efficient evalua-
tion of the XPath range queries. An efficient query execution plan should apply
the evaluation starting at the more selective segments of the query. However, one
of the main challenges involved in such execution plans for XPath range queries
is that range predicates, which happen to be more selective in this case, typically
involve the leaf level of the XML document tree. Moreover, pushing the evalua-
tion down to the leaves of the tree should be accompanied with the appropriate
leaf indexing techniques to avoid inspecting a large number of leaf nodes. It is
clear that plans such as Q′ do not utilize the common optimization technique of
pushing down the selection operation down to the leaves of the query plan tree.
Ignoring the selectivity of the path elements results in the exponential growth of
the intermediate result set which must be retrieved from the database. We argue
that it is essential to utilize effective summarization and indexing techniques to
reduce the search space based on the content and most selective elements of the
XML document collections.

In this paper, we develop an XML query processing system for XPath range
queries named FLUX. FLUX employs an efficient B+-tree based index structure
to locate the leaf matches to the range predicate of a query in its initial stage.
Each leaf match, ni, of the document tree stores a compact path signature of the
root-to-leaf path structure ending at ni, using the notion of Bloom filter [4]. In
the next step, the path signatures of each matched leaf instance ni is compared
with the query’s path signature to eliminate those instances whose path signa-
tures are very different from that of the query. To the best of our knowledge, this
is the first attempt to specifically address the matching of XPath queries with
range predicates in XML document collections. The main features of FLUX are
summarized as follows:

– An efficient B+-tree based indexing scheme is constructed on the indexable
(e.g., textual, numerical, date, etc.) elements/attributes of the XML docu-
ment for effective retrieval and matching of the query’s range predicate.

1 The fraction of the structural elements that satisfy the predicate.
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– FLUX incorporates a novel bit-wise hashing scheme based on the notion of
Bloom filter on ELEMENT and ATTRIBUTE contents of XML document trees.
A family of hash functions are applied on the path components where each
path is summarized to a compact bit vector signature. As a result, the path
matching can be performed very efficiently through the comparison of path
signature bit vectors.

– Extensive experimental evaluations demonstrate the effectiveness of FLUX
for XPath range queries on real and synthetic XML datasets.

The rest of the paper is organized as follows: Section 2 presents the problem
definition. Sections 3 and 4 provide the descriptions of range and path matching
procedures, respectively. Section 5 finalizes the FLUX algorithm followed by Sec-
tion 6 which provides the experimental results and analysis. Section 7 concludes
the work.

2 Problem Formulation

XML documents are rooted ordered tree structures where each node in the
document tree corresponds to the document’s ELEMENT, ATTRIBUTE, or TEXT
nodes. The TEXT nodes represent the values of their parent ELEMENT nodes, and
ATTRIBUTE nodes introduce branches of their parent ELEMENT nodes. In this pa-
per, we focus on simple XPath Range expressions which are defined as follows:

Definition 1. (XPath Range Expression). A simple XPath expression p =
e1t1e2t2 . . . ekR is called an XPath range expression (XPR), where ei denotes an
Ancestor-Descendant (AD, // ) or Parent-Child (PC, / ) edge, and ti denotes the
tag of an ELEMENT or ATTRIBUTE, and R represents a range predicate (sentinel) over
an indexable element/attribute (e.g., numerical, textual, date, etc.), respectively.

Example 1. q1 = /dblp//article/[2004 ≤ year ≤ 2005], and q2 = /management/

/employee/[90K ≤ salary ≤ 100K] represent XPR expressions on dblp and an
employee database, respectively. For instance, in q1: e1 = /,t1 = dblp,e2 = //,

t2 = article, e3 = /, and R = [2004 ≤ year ≤ 2005].

Definition 2. (Path Signature). Assume that p = e1t1e2t2 . . . ektk is an
XPath expression, where tk is an indexable element/attribute, and HF is a fam-
ily of hash functions, which map each tag of p onto a set of hash values. The
hash values of the tags (t1, t2, . . . , tk) are collectively combined2 to construct a
single bit-vector signature for the path structure p.

Given an XML dataset and an XPath range expression, we need to locate and re-
trieve all the qualifying matching instances. Matching the query against an XPR
instance of the dataset involves comparing their corresponding path structures
and evaluating the range predicate over the instance. The range predicate match
2 Details are discussed in Section 3. Intuitively speaking, it is to use these hash values

to set the bits in a bit-vector.
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of the sentinel R of the query expression seeks all the corresponding instances
in the database having sentinel r such that r ∈ R. For instance, considering the
query q1 (from Example 1), this phase corresponds to locating all the instances
of the year attribute being in the range of [2004, 2005], which are referred to as
range-matched instances. Furthermore, the path structure signatures of all the
range-matched instances are compared against the query’s path structure signa-
ture. If the path structure signature is close enough (similarity measurement as
defined in Definition 3) to the query’s path structure signature, the path struc-
ture will be further checked against the query’s structure to determine whether
it is an exact match to be finally reported as answer to the query.
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Definition 3. (Candidate Matching Instance). Given the XPR expression
q = e1t1e2t2 . . . etR, and any XPR range-matched instance p = e′

1t
′
1e

′
2t

′
2 . . . e′

t′r of
the database, let HF denote a family of hash functions which map a path structure
onto a bit-vector. Moreover, let f:u → 2 ℵ denote a function on bit-vectors which
returns the set of all indices of the “set” bits of any bit-vector u. Then, the XPR
range-matched instance p is called a candidate matching instance to q, if

f(HF(e1t1 . . . et) ) ⊆ f(HF(e′1t
′
1 . . . e′t′) ), and r ∈ R.

For instance, given two path structures q and p, where HF(q) = 100001 and HF(p)
= 101101, then p is called a candidate matching instance of q because f(HF(q))
= {1, 6} ⊆ f(HF(p)) = {1, 3, 4, 6}.

Definition 4. (Path & Range Components). An XPath range expression p
= e1t1e2t2 . . . ekR consists of two main components, a path expression compo-
nent denoted by Qρ = e1t1e2t2 . . . ek and a range predicate (sentinel) com-
ponent Qη = R.
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Example 2. The XPath range expression q2 = /management//employee/[90K ≤
salary ≤ 100K] consists of two components: the path expression component Qρ

= /management//employee/salary and the range predicate component Qη = 90K

≤ salary ≤ 100K.

Given an XPR query Q, FLUX proceeds in two different phases, (i) finding the
regions in the database satisfying the range predicate component Qη of the query
(range matching), and (ii) matching the query path component Qρ against the
range-matched instances of the database (path matching). Range matching is
the initial step and the results of this stage are passed to the path matching phase
for structure matching and refinement of the answers. The following sections
provide the details of the range and path matching procedures.

3 Range Matching

Any range query may benefit from efficient indexing mechanisms to quickly lo-
cate and retrieve the intersecting portions of the database satisfying the range
predicate. Popular indexing techniques such as B+-trees and R-trees have been
extensively applied to alleviate such problems in the general context of range
predicate queries. The range matching phase of FLUX employs an indexing tech-
nique based on B+-trees on the range predicate component Qη of the query for
the effective reduction of the search space.

An offline procedure constructs a B+-tree index on the indexable elements/
attributes (e.g, numerical, textual, date, ...) of the XML document. Part 2 in
Figure 1 depicts a portion of one such index tree, constructed on the age element
of a typical XML employee database. For instance, the last leaf bucket stores the
age content information for two existing age values 65 and 66 in the database.
Each instance (e.g. age= 66) also holds the bit-vector signature of the actual path
component leading to this node (details provided in the next section), and its cor-
responding ELEM-ID information. The ELEM-ID is the preorder traversal rank of the
corresponding node in the actual XML document. For instance, the node instance
with age = 66 has preorder rank of 72, which is shown in the document tree of Fig-
ure 1, named as the node 7266. Note that, each individual occurrence of an internal
or leaf node has a unique preorder value.

It is important to note that our proposed encodings (as explained above) is
different from the encoding schemes used in [1, 6, 11, 17]. Those encoding schemes
associate interval/regional encoding with every node, based on the document
order. For instance, each label may consist of (start, end, level) values for each
node, acquired from the preorder traversal of the document, which is used to (i)
help identify PC or AD relationships, and (ii) impose a logical document order
among the nodes. We argue that, it is enough to use the preorder ranks of the
nodes to impose the document order. Moreover, each node is associated with
a parent pointer in order to locate its parent node. Given a leaf instance node
ni, the parent pointer parent(ni) is used to construct the complete leaf-to-root
path originating from ni. This complete path structure is constructed in the last
stage of the path matching phase as the final round of path comparison.
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4 Path Matching

Given an XPR query Q and the range-matched instances pi of the database,
the path matching phase performs the necessary steps to identify those path
structure instances pi whose path component pρ

i matches the path expression
component Qρ. In the offline phase, each path expression of the database is
hash-mapped and summarized by a compact bit-vector signature by collectively
applying a family of hash functions on the element tags of each path based on
the notion of Bloom filter [4]. In the following, we will introduce the Bloom filter
and the motivations behind incorporating it.

// employee

B+-tree index
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0 01 0 01 1 1 0 1 0 1 0 001

h1 h2 h1 h2 h1 h2

m bits

P = 
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%n1 %n2 %n3

%S

 / management / salary / 72,000

Fig. 2. A Bloom filter example

Bloom filter is a space-efficient data structure to probabilistically represent a
set and its elements to support highly accurate set membership queries [4]. The
Bloom filter B consists of a bit vector of length m, and a family of k independent
hash functions. Given a set S = {n1, n2, . . . , n|S|}, a family of hash functions are
used to construct a bit-vector signature for S. Figure 2 depicts the construction
of a Bloom filter bit-vector signature using k = 2 independent m = 8-bit hash
functions h1 and h2, on the path set S = {management, employee, salary} , where
n = |S| = 3, from an employee database.

In general, given each element ni ∈ S, the family of hash functions hj (1 ≤
j ≤ k) are used to map ni into a bit-vector. All the entries of the bit vector are
initially set to zero. In order to construct the desired bloom bit-vector Bni , all
the k hash functions hj are applied to ni. The application of each hj on ni results
in “setting” some entries of Bni to 1. For instance in Figure 2, the application
of hash function h1 on n1, h1(n1 = management) sets the 1st and 8th bits of the
corresponding bit-vector Bn1 . Similarly, h2(management) sets the 3rd and 5th bits of
Bn1 . To construct the bloom bit-vector for the whole set S = {n1, n2, . . . , n|S|}, the
resulting bit-vectors Bni are combined to form the bloom bit-vector BS . The combina-
tion of the bit vectors Bni may be performed through a simple logical OR operation.
That is, the bit vectors resulting from the application of h1 and h2 on the path
element management, employee, and salary of Figure 2, are combined using a
logical OR function to construct the bloom bit-vector signature BP ρ (=BS) for
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the path component P ρ = /management//employee/salary. The ith entry of BP ρ

is set to 1 if and only if the ith bit vector entry of at least one of the path com-
ponents Bn1 , Bn2 or Bn3 has been set to 1. For instance, in Figure 2 the 8th-bit
of the final Bloom filter BS is set because the 8th-bit of Bn1 (or similarly Bn2)
is set. Note that, such application of Bloom filter relaxes the edge requirement
as imposed by the query. This feature helps to additionally identify and report
those instances whose path structure components are very similar to the query,
yet having different edge structure.

Subsequently, to test whether the query’s path component Qρ is similar to an
instance path component BP ρ of the database, the same set of hash functions
are applied to BQρ and all the corresponding bit-vector entries are set to 1. If all
the “set” entries of BQρ match with their counterpart in BP ρ (that is h(BQρ) ⊆
h(BP ρ)), it implies that the database path component BP ρ is identical to BQρ

with some probability. The set of all such path structure instances is a superset
of the actual (exactly-matched) answer set.

However, there is a chance of BP ρ and BQρ being identical while the actual
path components P ρ and Qρ are different (e.g. by-chance collisions/similarity
of the “set” entries of Qρ and P ρ). In such a case, a filter error (false positive)
is said to have occurred. The performance of the hash functions of the Bloom
filter depends on the filter error ratio, which is proven by B. H. Bloom [4] to
be as follows. Let n be the number of nodes (or elements) in the set S (or
path component P ρ), m the size of the bit vector and k the total number of

hash functions. The filter error ratio is defined as
(
1 − e−

kn
m

)k

. For instance,
the formula suggests a filter error of only 2.8% for n = 3, m = 8 and k = 2.
Moreover, one of the most interesting features of the Bloom filter is that it
guarantees not to incur any false negatives while being highly accurate and very
space-efficient. Note that one of the shortcomings of this approach is the lack
of support for updates. However, a variation of Bloom filter, Counting Bloom
Filter [10], can be employed to resolve such a shortcoming.

Based on the above discussion, we can observe that the Bloom filter represen-
tation of each path structure provides an efficient mechanism to compare each
path component of the document tree against their counterpart in the query. We
next introduce the overall procedure of the FLUX algorithm which combines the
features of range and path matching schemes.

5 FLUX Algorithm

Given the document tree T , the offline phase starts by performing a preorder
traversal on T and assigns preorder ranks (ELEM-ID) to each node of T (the
number on the top-left of each node in Figure 1). These preorder ranks create
a virtual document order. FLUX consists of five individual phases as described
in the following. Due to the space limit, we omit the algorithmic details of the
FLUX procedure here.
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1) Offline Index Creation. The FLUX offline manager constructs a B+-
tree index structure on the indexable attributes of the XML document collection
(e.g. age, salary, year, and date). The leaves of each such B+-tree store the
attribute content (e.g., age value), ELEM-ID, and the bloom bit-vector signature
of the root-to-leaf path structures of the corresponding nodes. For instance, the
node corresponding to age = 64 at the leaf bucket level of B+-tree of part 2 in
Figure 1 stores the preorder rank ELEM-ID (e.g. 8 in this instance) of the actual
node of the document tree whose age attribute has the value 64. Moreover, it
stores the bloom bit-vector signature of the root-to-leaf path structure ending at
that particular node. For instance, for the node age = 64 located at the B+-tree
leaf bucket of part 2 in Figure 1, the bit-vector 00101110 represents the bloom
signature of the root-to-leaf path structure /management/employee/age of the
node 864 of the document tree in part 4 of Figure 1, where the numbers 1,2 and
7 denote the ELEM-IDs of the element tag instances of management, employee
and age element nodes, respectively.

2) Query Segmentation. This phase segments the query expression Q
= //management//employee/[64≤age≤66] into the path component Qρ = /
/management//employee/age and the numerical predicate component Qη = [64
≤ age ≤ 66].

3) Range Lookup. The search part of this phase corresponds to find the
range-matched instances of the query range predicate (Lines 2-5 of the algo-
rithm in the appendix shows such a procedure). For instance, the corresponding
B+-tree of the age range attribute is searched for potential candidate bucket
nodes matching the predicate in Qρ (e.g. nodes 64, 65 and 66 in the part 2 of
Figure 1 for [64 ≤ age ≤ 66]).

4) Path Matching and Filtration. Let Bp1 , . . . , Bpk
denote the bloom sig-

natures of each of the k matches of the database (e.g., the Bloom filter of the path
component /1management/2employee/7age which ends at node 864), whose con-
tents have already been matched with the query’s range predicate Qη. This stage
is responsible for matching the path component of the query BQρ against the
path components of the range-matched instances Bp1 , . . . , Bpk

. It ranks each
matching instance Bpi based on its similarity to BQρ . The path matching proce-
dure corresponds to the invocation of the BloomFiltration() function at lines
14-15 of the algorithm described in the appendix where its definition is provided
at lines 30-36. After filtering out the false positives, the candidPath holds the
results of candidate matching instances to Q in the database. Finally, the ac-
tual path structures of the non-filtered matches are constructed (using the node
pointers from leaf-to-root), compared against the query and reported to the user.

6 Experimental Evaluations

We implemented the FLUX system using Java 1.4.2 and ran our experiments
on a Pentium M-2GHz processor with 2GB of main memory, using a page size
of 1KB (determine the number of indexed data items which a leaf node can have
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and the number of key/pointers which an internal node can have for the B+-
tree.), cache size of 100KB, and LRU cache replacement policy. We compared
our proposed technique with PathStack [6] which is the best in the literature
for simple XPath queries. The PathStack technique is also implemented using
Java 1.4.2. Two variations of PathStack were implemented in terms of the way
of retrieving the XML document elements residing in the range specified in the
query for the structural join: one variation uses B+-tree index and the other
variation does not. This is mainly because that we wanted to make sure that
the advantage of using FLUX is not necessarily overshadowed by the indexing
solution alone.

The experimental evaluations were performed on a set of both synthetic
(XMark [24] containing information about an auction site) and real (dblp3)
XML datasets. The dblp dataset (sized of 127MB) consists of 3,332,130 element
nodes with an average and maximum depth of 2.9 and 6, respectively. We gen-
erated a set of synthetic XMark datasets with scaling factor ranging from 0.1 to
1.2 for the experimental evaluation. The average depth for the XMark datasets
is 5. The number of hash functions used for constructing the Bloom filter is
4. For each element along the path which leads to an instance of the range
attribute, its MD5 digest (a 128-bit cryptographic message) is computed [16].
This 128-bit message is evenly divided into 4 groups. Each 32-bit group is fur-
ther transformed into an integer ranging from 0 to the Bloom filter size − 1.
Unless otherwise stated, the Bloom filter size was chosen to be 14 bits for dblp
dataset and 16 bits for XMark datasets which will be explained later in this
section.

The results presented in this section were generated by averaging the results
from running a workload of 100 random queries on dblp and XMark datasets. The
dblp query template was chosen as QD = /dblp/article/[$LB ≤ year ≤ $UB],
for different random values of $LB and $UB. Similarly, the XMark query tem-
plate was selected as QX = /regions//item//mail/[$LB ≤ date ≤ $UB]. The
range values [$LB, $UB] were chosen randomly from the <year> and <date>
domain space in the year range 1945 to 2003 and date range 01/01/1998 to
12/28/2001. The dblp dataset includes 328,831 path instances leading to the
year element, which is the reason behind using QD as the query template for
dblp dataset since it provides a large candidate set. The richness of the path
structure which leads to the <date> element is the reason behind choosing QX

as the query template for XMark dataset (more structural variations on QX can
be applied for the structural effect study). Moreover, different amount of ran-
dom noise was imposed on the dblp and XMark datasets to create path structure
variation at the element names. For instance, if x% noise is imposed on the dblp
dataset and assume that there are N root-to-leaf paths leading to year element,
then N× x% of them will be modified by randomly changing one or more ele-
ment tags to create the path structure variation. Following are some notations
used in the upcoming figures:

3 Acquired from the University of Washington’s XML Data Repository accessible
through http://www.cs.washington.edu/research/xmldatasets/
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• Total Candidates: Number of all the possible year instances (dblp) and date
instances (XMark) in the database for the inspected range resulting from the
range query search on the B+-tree index structure lookup phase.
• Remaining Tuples: The number of candidates left for further inspection
after pruning the intermediate results by comparing their Bloom filter signature
against the Bloom filter signatures of the query.
• Actual Answers: The number of actual answers in the database to the query.
• False Positive Rate (FPR): The FPR is calculated as (RemainingTuples
− ActualAnswers)/RemainingTuples, which indicates how close the filtration
gets to the actual answer set.

Figures 3-6 analyze the effect of range length, Bloom filter size, the imposed
noise, and the scalability analysis on the Filtration , False Positive Rate
(FPR) and Response Time effectiveness of FLUX, on the dblp and XMark
datasets, respectively.

6.1 Effect of Range Length
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Fig. 3. Effect of range length variation on the filtration, FPR and response time
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Figure 3 depicts the effect of the range length r = |$UB − $LB| on the perfor-
mance of FLUX on dblp and XMark (scaling factor = 1, size ≈ 113MB and noise
= 30%) datasets. The query’s range length/extent is varied from 2 (narrow) to
6 (moderately wide), and 1 (narrow) to 10 (wide) on the dblp4 and XMark
datasets, respectively. FLUX succeeds in pruning a substantial fraction of the
candidate result set in the Bloom filter comparison phase as we can observe
from Figure 3(a) and 3(d). For instance, in Figure 3(a), the column pertaining
to r = 3 indicates that the application of bloom filtration reduces the number
of total candidates from 19854 tuples to 4762 tuples, or in other words, to 24%
of the total candidate result set. Figures 3(b) and 3(e) depict the total response
time of performing the designated operations, as a function of range length com-
pared with PathStack [6] (with and without using B+-tree index structure). The
running time of FLUX consistently outperforms PathStack on both dblp and
XMark datasets. For instance, in Figure 3(e) FLUX performs 100-times faster
on average when compared to PathStack (with B+-tree index structure). Fig-
ures 3(c) and 3(f) depict the stability of False Positive Rate (FPR), which stays
within 2% of the remaining tuples as the range length varies for dblp dataset
and 14% for the XMark dataset.

6.2 Effect of Bloom Filter Size

Figure 4 analyzes the effect of Bloom filter size (in bits) as it varies from 10
to 20 bits and 6 to 20 bits on dblp and XMark datasets. The XMark dataset
of this section was generated with a scaling factor of 1, with about 113MB in
size and 30% imposed noise at the path element names. Figures 4(a) and 4(d)
validate the intuitive expectation that the larger choice of the bloom signature
length should result in more effective filtration. Figures 4(b) and 4(e) depict
the response time analysis of FLUX when varying the bloom bit-vector size in
answering the same set of 100 random queries on each respective dataset. The
filtration (Figures 4(a) and 4(d)) and response time (Figures 4(b) and 4(e))
performance of FLUX improves consistently as the size of the bloom bit-vector
increases from 10 to 14 bits for the dblp dataset and 10 to 16 bits for the XMark
dataset. This is due to the fact that, the chance of bloom signature collision5

reduces as the size of the bloom signatures increases. When the bloom bit-
vector increases from 14 to 20 for the dblp dataset and 16 to 20 for the XMark
dataset, the filtration effectiveness still increases while the query response time
does not due to the fact that larger size of Bloom filter will incur more time to
retrieve the corresponding data. Hence, we choose 14 bits for the dblp dataset
and 16 bits for the XMark datasets for constructing Bloom filters in a timely
manner. Moreover, Figures 4(c) and 4(f) demonstrate the filtration effectiveness
of FLUX which is shown in the reduction of FPR when increasing the size of
Bloom filter.

4 e.g. 1999 ≤ /year ≤ 2003 has the range extent of r = |2003 − 1999| = 4.
5 The probability bloom hash functions assign an identical bloom signature to two

different path structures.
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Fig. 4. Effect of the size of Bloom filter signature (in bits) on filtration, FPR, and
response time

6.3 Effect of Noise in Data

For this set of experiments, we introduced random noise at the element names,
varying from 1% to 5% on dblp dataset and 1% to 8% on XMark dataset,
respectively. Figure 5 depicts the effect of the imposed noise ratio on the overall
performance of FLUX. As expected, the introduction of more noise results in
larger FPR as shown in Figures 5(c) and 5(f). However, despite the introduction
of noise, FLUX performs very efficiently in filtration ratio and response time as
observed in Figures 5(a) and 5(d), and Figures 5(b) and 5(e), respectively. FLUX
substantially outperforms PathStack regardless of the amount of noise imposed
on the data as shown in Figures 5(b) and 5(e). Relative to PathStack, FLUX
performs even better when more noise is inherent in the dataset, which is a very
desirable feature when the query is posed on datasets with variations in their
representation or not necessarily conforming to a unified schema or Document
Type Definition (DTD).
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Fig. 5. The results of applying random noise with various intensity on the element
names

6.4 Query Structure Variation

Table 1 depicts the response time analysis when varying the query structure in
FLUX and PathStack (with and without B+-tree index). From type Q1 to Q3,
more element tags are imposed on top of the range attribute to create more com-
plex path structures. The results were acquired by averaging the running time
of 100 random range queries of type Qi (of Table 1). The range domain was
selected in the 01/01/1998 to 12/28/2001 date range and each random range
query has length 4. The Bloom filter size was selected to be 16 bits. The in-
corporated XMark dataset was generated using a scaling factor of 1 with 30%
noise. In all the observed cases, FLUX consistently outperformed PathStack. The
performance of FLUX is slightly affected when the path structure of the query
tends to get more complicated due to the bottom-up computation approach.
The set of the remaining tuples for each type of query is the same after using
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the bloom filtration. Thus the cost of retrieving the corresponding paths for the
remaining tuples for further inspection against the query is approximately the
same. However, for PathStack, more structures with the query will incur more
document elements retrieved from the disk for the structural join to produce
the matching instances of the query. Hence, the performance of PathStack will
decrease when more path structures are imposed on the same range attribute.

Table 1. Response time (in milliseconds) comparison of FLUX v.s. PathStack on
XMark dataset varying the query structure. PSB = “PathStack with Btree” and PS =
“PathStack without Btree”.

Query FLUX PSB PS

Q1 = regions//mail/date 7.9 1521 2937

Q2 = regions//item//mail/date 8 1901 3323

Q3 = regions//item/mailbox/mail/date 8.1 2307 3708

6.5 Scalability Analysis

In this set of experiments, we generated a set of XMark datasets with scaling
factors ranging from 0.1 to 1.2 to study the effects of document size on the
effectiveness of FLUX. Figure 6 depicts the filtration efficiency and response
time analysis of FLUX versus PathStack resulted from running a set of the
same 100 random range queries selected in the 01/01/1998 to 12/28/2001 date
range. The performance of both FLUX and PathStack suffers as the size of
the dataset increases, however, FLUX experiences from 98 times to 215 times
less performance degradation rate compared with PathStack with B+-tree index
structure. The comparison with PathStack without B+-tree index structure, is
even more dramatic.
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Fig. 6. The scalability analysis on XMark datasets

7 Conclusion

This paper proposed an efficient technique, named FLUX, for answering complex
range queries in a database of XML documents. FLUX incorporated a B+-tree
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based index structure on the contents of range attributes. It uses the notion of
Bloom filters to associate a structure signature to each range attribute instance.
The filtration performed by the bloom signatures of FLUX reduced the search
space to a minor fraction of the intermediate result set. Experimental results
demonstrate that the filtration, response time, false positive rate, speedup and
scalability of FLUX consistently outperforms PathStack [6] on both real and
synthetic datasets. The FLUX procedure proceeds with range matching followed
by path matching. Nevertheless, depending on the selectivities of both the range
and the path structure, it might be preferable to apply the structure matching
first and then the range matching, or vice versa. Part of our future research
work will include adapting FLUX or designing new index structures to handle
the cases with selective structures.
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Abstract. Designing data structures for use in mobile devices requires
attention on optimising data volumes with associated benefits for data
transmission, storage space and battery use. For semistructured data,
tree summarisation techniques can be used to reduce the volume of struc-
tured elements while dictionary compression can efficiently deal with
value-based predicates. This paper introduces an integration of the two
approaches using numbering schemes to connect the separate elements,
the key strength of this hybrid technique is that both structural and
value predicates can be resolved in one graph, while further allowing for
compression of the resulting data structure. Performance measures that
show advantages of using this hybrid structure are presented, together
with an analysis of query resolution using a number of different index
granularities. As the current trend is towards the requirement for working
with larger semi-structured data sets this work allows for the utilisation
of these data sets whilst reducing both the bandwidth and storage space
necessary.

1 Introduction

Recently the memory, battery power and processor capabilities of mobile de-
vices have increased greatly, but despite these advances the memory available to
the system remains a critical resource for data-intensive mobile applications. In-
creasingly, mobile services rely on XML for the storage and transmission of data.
Care needs to be taken in the representation of such data to support optimal
processing. Indexing can be achieved by external data structures although the
original XML needs to be retained to validate queries. Conceptually XML can be
represented as a graph with vertices used to indicate data items and structural
interrelationships shown by arcs. The structural elements can be compressed by
retaining only a skeleton representation of the graph and dictionaries can be
used to support non-redundant storage of leaf values.

Here we describe a hybrid system that uses signatures as an exchange mech-
anism for combining both of these approaches to produce an optimally efficient
representation of XML data. The motivation for the model is outlined in the next
section. Section 3 describes the components of the data structure and the bench-
mark queries used. The results of varying parameters on query performance are
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given followed by a discussion of the meaning that these results have for the data
model presented. We show that different combinations of vertices can be used
to help the resolution of queries involving both structural and value predicates.
Grouping based on path similarity is useful when resolving structural aspects of
a query but leaf values are needed to resolve queries on atomic value predicates.

1.1 Motivation

XML is a representation of semistructured data that is widely used in distributed,
Internet-based applications. Tags can be used to represent the labeling and the
edges are indicated by the hierarchical structure. Arbitrary graphs can be en-
coded in this flat-file representation through the use of special ID:IDREF pairs.

Queries over XML typically include both structural and value predicates.
Query 1 provides an example that seeks to return the authors of books with
the title ’Databases’. Figure 1 shows the data graph of the example source with
vertex identifiers added to each node.

Query 1 (Books on Databases) //book[/author & /title/DATA=‘Databases’]

Since Query 1 contains only forward facing query axes, it can always be answered
by a single traversal of the data structure. However, this technique becomes
impractical for very large data instances. For that reason, index structures are
employed by most DBMS.

The structural index approach is illustrated by the work of Kaushik et al.
[20,18]. Bisimilarity (i.e. the sharing of common subtrees) allows resolution of
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path location steps in linear time [4]. A family of indexes ((j,k)-F+B-index)
can be constructed using a range of values for forward or backward bisimilarity.
Excluding the path from the root vertex, the longest forward facing path in the
query graph has length two (book/title/DATA). There are no backward directed
paths so the (2,0)-F+B-index shown in Figure 2 is the smallest covering index
for the structural part of the example query.

Embedding the structural part of Query 1 into the index graph of Figure 2
can be done using the same algorithm that could be used to embed it into the
data graph (since the graphs are bisimilar). The complexity of the embedding
process remains unchanged but the size of the graph has been reduced from 25
vertices in Figure 1 to twelve vertices in Figure 2. Such a reduction in size can
be expected for most semistructured data sources, as most practical data graphs
contain only very few structural building blocks [3]. The structural elements of
the query can be resolved against the index graph but the original data graph
needs to be maintained in order to resolve the value predicate.

The query evaluation process, starting with the atomic value predicate is
presented in terms a dictionary-based structure (DDOM [28]). Figure 3 shows
the fully indexed dictionaries and the structural array of a part of the example
source. Using this approach on Query 1 the existence of title vertices containing
the atomic value ‘Databases’ can be quickly verified. These are the entries at
the addresses 8 and 24 in the structural array, corresponding to the vertices
&19 and &21 of Figure 1. Equally the index on the tag name dictionary can
be used to verify that there exist book and author vertices in the data graph. A
linear scan through the structural array is needed to verify ancestor-descendant
relationships between entries. In the example given, a scan for the first book
entry starting at position 11 leads to a title entry at address 15, but none of
the identified atomic value entries is encountered before the closing tags of the
title and book entries are found at positions 17 and 18 respectively. Thus this
entry, corresponding to vertex &5 of the data graph, does not represent a valid
result. The similar scan starting at the book entry at position 19 matches all the
required entries from the list of potential descendants, thus the result is valid.

Storing the complete range using the start and end addresses of the sub-
tree rooted by a node as shown in Figure 3, allows derivation of the ancestor-
descendant relationship using this information alone. The fact that identifiers
can be used to indirectly encode structural relationships between nodes of a tree
will be used by the hybrid representation presented here. Although this allows
the validation of the structural constraints between individual nodes, it still does
not allow the selection of a set of nodes based on their structural properties as
can be achieved using the index graphs.

Where data is distributed across a number of hosts, local caching can be a
useful tool for improving query response times. To maximize the benefit of this
kind of approach, it is important to optimize cache utilization by the applica-
tion. This is helped by making the data representation as compact as possi-
ble to improve the possibility of a query being resolved on the cache. Where
the cache is found to be inconsistent, it is again important that refreshing is
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carried out with optimum efficiency. Whilst the F+Bindex approach provides a
fast and compact index for resolving queries on XML by supporting the struc-
tural part of query resolution, validation ultimately requires access to the native
data representation. The DDOM approach replaces the native representation
with a more compact structure that exploits the redundancy often occurring in
large data structures. The purpose of the hybrid structure is to combine the
benefits of an F+Bindex with the benefits of the DDOM representation. The in-
tention is to produce a data structure that has the fast response characteristics
of the former whilst removing the need to refer to the original data structure.

2 The Hybrid Approach

The approaches described in Section 1.1 originate from different perspectives
and lack a common element that could be used for their combination. Index
graphs allow set-at-a-time operation and maintain structural relationships be-
tween vertex-sets whilst abstracting away from the individual vertices of the
data graph. Dictionary compression organises data into homogeneous domains
and maintains the identity of individual vertices of the data graph but their struc-
tural relationships are not exposed directly. The approach investigated here is
based on signatures as an exchange mechanism between the index graph and sig-
nature representation approaches. A signature is a compact representation of an
important property of a given source and in this paper it is used to describe the
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structural relationships between tree nodes. Two schemes are presented that can
be used to label the node-set of an ordered tree. The definitions can be equally
applied to unordered trees, where an arbitrary ordering of the child nodes will
suffice. The target domain of these labellings is the set of natural numbers, thus
they will be called numbering schemes in order to distinguish them from arbi-
trary labelling schemes. The numbering scheme implies an order on the node-set
given by the order of the natural numbers identifying them, even if the data
model is considered to be that of an unordered tree.

2.1 Related Work

Numbering schemes can be used to provide a basis for connecting structural
indexes with value representations. Dietz [13] describes a data structure for effi-
cient presentation of trees based on linked lists. An application of this structure
is the determination of the ancestor-descendant relationship based on the pre
and post-order numbering schemes. Grust [16] analysed the numbering scheme
further and identified that the original pre- and post-order numbering scheme
can also be used to answer queries along the previous/following axis of XPath.
The scheme was extended to include direct references to parent nodes and type
information (attribute node type or tag name and element) which allows for the
storage of the complete XML document in a single relation. Additional work
has been carried out on the use of numbering schemes in the context of XML
to improve efficiency [33,23,11], implement join processing [3], deterministic ad-
dressing [21] and relational database containment [34].

Several methods of efficiently compressing XML data have been developed,
the earliest XML conscious compressors took advantage of context based com-
pression to reduce the data size from text based compressors. Cheney [8,9] shows
a scheme that can achieve 10–25% reduction from even most efficient text based
compressors, while these schemes reduce the size of the data there is no way to
query directly this structure, the data must first be fully decompressed before
being able to query the data. The next broad range of XML compressors are
data structures which build on XMILL [24] to allow the analysis and storage of
the data into a queryable form [30,10,2,26], these allow efficient path queries over
the data while still needing large parts to be decompressed in the worst cases. We
have already investigated the use of dictionary compression techniques for rep-
resenting XML data structures [28] and other investigators have also examined
the decomposition of XML into array-based structures [12]. Ferragina et al [14]
developed a data structure combining several benefits of simple zip compression
with fast access by linking two compressed array structures.

Early work on different kinds of index structures for semi-structured data fo-
cused on query optimisation for the Lore system [25]. The main thrust of this
work was the development of heuristics that determine when to use each of
the four specific forms of indices (value, text, link and path index) provided by
their experimental base. Halverson et al [17] identify the need to combine pat-
tern matching techniques based on inverted lists with the navigational approach
typical for XML tree traversal algorithms pointing out the lack of integration
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between these two lines of research. They provide a cost model for query answer-
ing in each of these domains, identifying query classes that are better suited to
either approach or to a combination of both. Full path indexing can be supple-
mented by dynamic indexing that responds to query load [7]. Sub-graphs and
feature extraction can also be used as the basis of index construction [32,35].
Indexing techniques for supporting cross-border queries in mobile applications
are also emerging [22].

Vectorization of XML, developed by Choi and Buneman [12,5] combines the
XMill [24] approach for compact representation of atomic data with the approach
for skeleton compression by sharing subtrees [4] to address XML join queries.
Their fundamental assumption is that the skeleton of typical XML documents
is small and thus can be kept in memory. The actual data is only used in the
last stage of their join algorithm, avoiding unnecessary I/O operations.

Kaushik et al [19] extend their original work [18,20] on structural indices for
path expressions to include keyword constraints on the contained atomic data.
They propose a general strategy to combine structural indices with inverted lists
in order to address this class of queries efficiently and test their approach using
the Niagara system [27]. As their value indices are based on techniques developed
in the context of information retrieval systems, their resulting query system
includes support for finding the k most relevant results. An efficient structure
for disk-based implementation of the F&B-index has been developed by Wang et
al [31]. Structural and index values are combined by Amato et al [1] by extending
the structure to incorporate the values for some elements or by incorporating
B+−Tree value indexes within the structure. Even within unstructured data
there are often regular substructures that allows for a mapping to semi or fully
structured data, Buneman et al [6] describes such a mapping to an edge-labelled
graph structure.

2.2 Contribution

The fundamental difference between the work reviewed and that presented here
lies in the integration of the different index structures. In the scheme of Kaushik
et al, the inverted list structure uses signature entries based on the same number-
ing scheme proposed here, extended by an identifying label of the corresponding
index node in the structural index. The approach presented here breaks the
atomic data dictionaries according to the structural groupings. These groupings
replace the use of inverted lists. Consequently the part of the dictionary corre-
sponding to a structural grouping can be incorporated into the node of the index
graph representing it. By doing this the secondary data structure of the index
graph becomes a primary data structure that replaces the original data graph
rather than summarises it.

The data grouping implied by the DDOM approach is based on local backward-
bisimilaritywithkb = 1.Thus a structural index graphbased onvertex bisimilarity
with kb = 1 can be combined with the indexed dictionaries presented in Figure 3.
At the same time, the vertex identifiers used in both the dictionaries and the index
graph can be replaced with the entries based on Dietz’ numbering scheme, creating
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a unique address space for validation purposes. The approach suggested here can
be seen as the cross-product of an index graph with a signature with its leaf nodes
being replaced by domain dictionaries. Figure 4 illustrates this using the (1,1)-
F+B-index graph of the example data graph shown in Figure 1. In this illustration,
the incorporated atomic value dictionaries are suppressed in order to simplify the
diagram.

3 Experimental System

The purpose of the experimental work is to compare query performance on the
data graph structure with performance on the hybrid NSGraph. In addition, it
seeks to characterise the optimal granularity in the NSGraph structure. To carry
this out, thirteen queries representing five query classes were executed against
the datagraph and NSGraphs with forward and backward bisimilarity ranging
from 0 to 3. Xmark [29] data sets ranging from 1 MB to 30MB were used in
this experimental work. Branching path expressions are used as a basic query
language since they represent an important subset of the expressive power of
selective query languages for semistructured data. Only the edges in the tree view
of the data graph are considered, i.e. additional graph arcs are not supported.
As a consequence of this restriction to trees, the query language can also be
restricted to allow tree patterns only, thus eliminating the need for backward
directed axes. The semantics of query expressions are restricted to return the
matches of the root predicate of the query tree, rather than the matches of an
arbitrary predicate. The resulting language allows the encoding of tree patterns,
thus its expressions are called tree or twig pattern expressions [33,3].

3.1 Data Structure Components

The data structure is based on index graphs utilising the concept of local bisimi-
larity and is referred to as an NSGraph, In addition, a variant of Dietz’ number-
ing scheme annotated by node level information [3,13] and a dictionary structure
such as that used in DDOM is also needed. The choice of the family of index
graphs developed by Kaushik et al. is based on their clearly described and math-
ematically sound model. The complete F&B-index is the minimal covering index
graph for all branching path expressions.

The prototype allows for the complete family of indices based on local bisimi-
larity so that the influence of different data groupings on the query performance
can be investigated. The concept of bisimilarity generalises this approach by
grouping vertices by their label first and then refining this organisation based
on incoming or outgoing paths. The possibility for parameterising the bisimula-
tion results in different refinements of the dictionary structure to be tested. An
important special case will be the (k, 1)-F+B-index, which combines the proper-
ties of the F(k)-index for structural constraints with the previously used atomic
value dictionaries grouped by parent nodes.
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Fig. 5. The benchmark tree pattern queries in BPE syntax

3.2 The Benchmark Queries

The tree pattern queries collected for this experiment (Figure 5) are designed
to highlight the response of the implemented query algorithms to a number of
distinct challenges within the designated query class.

Linear Path Queries. The first set of queries contains only expressions in which
no predicate of the query tree pattern has more than one child. Such queries can
be resolved using simpler data structures, e.g. path indices such as the DataGuide
[15]. The performance of the hybrid system will be tested against this class of
queries because it represents an important subclass of the general query class.
The queries used are adopted from Kaushik et al. [19]. Query K1 is a modification
of the version of the original work that returns all item entries containing the
keyword “attires” rather than atomic “attires” vertices that occur below an item
in order to comply with the restrictions of tree pattern expressions. Queries K2
– K4 are as described in the original research.

Point Queries. Queries Q1a and Q1b combine both structural and atomic value
predicates. They essentially determine whether the given pattern exists in the data
or not.

Queries with Varying Cardinality. The Queries Q2a – Q2c all locate parts
of the data graph with the same structure, a profile that contains at least
income, education and gender information about the person it is describing.
Query Q2a represents this structural constraint alone, whereas Queries Q2b and
Q2c restrict the results to subsets by means of an atomic value predicate.

Conjunctive Value Queries. Queries Q3a and Q3b both contain more than
one atomic value predicate that needs to be true in combination with the struc-
tural predicates. Query Q3a looks for an item whose child nodes match three dif-
ferent, single valued atomic value predicates for its location, payment type and
quantity. The item of Query Q3b has only one child predicate, but this predicate
needs to comply with two atomic value predicates at the same time. The semantics
of keyword queries represent a substring matching on the atomic value.
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Queries Containing Regular Expressions over Nested Parts of the
Source. The textual descriptions of items and categories of the XMark dataset
can contain highly nested mark-up language and mixed content elements. Queries
Q4a and Q4b query this part of the database for structural constraints with vari-
able path lengths and tag label wildcards.

4 Experimental Results

4.1 Data Volumes

Merging similar nodes in the data graph restricts the overall size of the structure.
The 30Mb benchmark data graph contains 1,529,075 vertices. A (2,1) bisimula-
tion (i.e. kf = 2, kb = 1) of this structure reduces the size of the vertex set to
10,496 vertices. The size of the in-memory representation of the data graph and
NSGraph is shown in Figures 6 and 7. Whilst the NSGraph is smaller than the
data graph increased levels of bisimulation restrict this benefit.

4.2 Query Response with Fixed Bisimilarity

The first set of experiments keeps the bisimilarity structure constant, allowing
a comparison of the influence of different query strategies on the data graph
and NSGraph structures. The bisimulation is designed to be covering for the
structural part of the most complex query not containing descendant operators,
i.e. its forward bisimilarity kf is set to the depth of the query tree pattern. Its
backward bisimilarity kb is set to one, in order to organise the atomic data by its
parent’s tag label. Consequently, the NSGraph used for the linear tree patterns
is based on (3,1)-bisimilarity and the NSGraph used for the branching query
patterns is based on (2,1)-bisimilarity.

Figure 8 summarises the performance of the set of benchmark queries on the
data and NSGraphs. The number of vertices visited is an indication of the ex-
pected query cost. Although the prototype system works entirely in memory, a
practical implementation working on larger datasets would need to load data
from external storage. A reasonable base for performance modelling in database
systems is to assume one memory read operation per vertex accessed. Conse-
quently, the costs of loading a large but localised structure like a vertex of an
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NSGraph containing many entry references is usually cheaper than loading many
small structures that might be spread across many different blocks. Data inten-
sive applications operating in a wireless environment may require additional
blocks of data to be fetched from the server as a consequence of an attempt to
read an item not currently in storage. Restricting the number of vertices visited is
therefore likely to improve the overall performance of these mobile applications.

For almost all the benchmark queries on the NSGraph fewer vertex visits are
needed than for the equivalent data graph (Figure 8). The only exception to this
pattern is Query K1. The performance benefit for the NSGraph is limited for this
query because the atomic value predicate has a very low selectivity, returning
only twenty five hits on its own, of which only five appear in the right context.
Thus only a very limited fraction of the data graph is actually searched and
the NSGraph cannot offer a substantial saving on this account. In addition, the
NSGraph is not covering for even the structural part of this query.

4.3 Varying the Coarseness of the NSGraph Structure

The results presented in Figures 9 – 14 show the behaviour of the query classes
in the context of varying bisimulation (Three-dimensional charts are necessary
to show the effect that varying both the forward and backward bisimulation has
on query performance). During the resolution of each query on the NSGraph,
the candidate set of results has periodically to be validated, because although
the graph is designed to be covering for the structural part of a query, it is not
covering for tree patterns containing data predicates. The relative computational
cost of the queries on the NSGraph can be estimated by the total number of
entries joined in such a way because the join algorithm used has a complexity
that is linear in the size of its arguments. For each query shown, both the number
of vertex visits and the join cardinality patterns are presented. To aid clarity,
the results for query class Q4 have been shown separately. Figures 11 and 12
present one result for each of the query classes Q1 and Q2 since there is little
variation between the members of these groups. The kb axis in Figures 9, 12 and
14 is reversed for reasons of intelligibility.

Figure 9 shows the minimal number of vertex visits taken to answer each lin-
ear query. The axes kf and kb determining the forward and backward bisimilar-
ity respectively. It is clear that the number of vertices visited increases with the
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complexity of the bisimulation and the NSGraph based upon it. In most cases there
is a significant difference between those structures based on zero backward bisimi-
larity and NSGraphs based on bisimilarity greater than zero.However, the increase
for K1 is not monotonic. For the case where kf = 3 and kb = 3 there is a reduction
in the number of required vertex visits. Query K1 dominates the processing costs
for this set of queries because the descendant operator means that no graph based
on local bisimilarity is covering even for the structural aspect of this query. For K3,
the number of vertex visits grows predominantly with the backward bisimilarity
length, but is independent of kf with the exception of the case where kf = 0. The
minimal number of vertex visits required for Query K4 rises sharply with low values
of both kf and kb. In contrast to the pattern of vertex visits, the total cardinality
of joins required to compute the results is minimal at the point where kf = 3 and
kb = 3 for K1 and K3 but is stable for K4.

Figures 9 and 10 suggest a trade-off exists between the precision of the
NSGraph and the related I/O costs. The former is characterised by the join
cardinality and the latter by the number of vertices being visited. However,
there exists also a significant influence of the specific query and not only the
general query class. As Figure 5 shows, the queries K1 and K4 are isomorphic
as are the queries K2 and K3. Thus the observably different response to the
different data groupings must be a consequence of the different selectivity of the
constituent predicates.

The results obtained using the branching query classes are similar to those
obtained for linear queries, which suggests that the design is equally suitable
for a range of query classes. Figures 11 and 13 show the minimum number of
vertices being visited for the benchmark query classes over different NSGraphs.
The data confirms the results from the linear case. The number of vertices visited
stabilizes for increasing backward and forward bisimilarity for Q1 and Q2 but
increases monotonically for both examples of Q3. Query classes Q1 and Q2 show
that even a continually growing NSGraph does not imply a continually growing
number of vertices being visited.

The total number of entries being joined during query execution (Figures 12
and 14) reveals that for classes Q1 and Q2 the computational effort is minimal
for maximal values of kf and kb. With decreasing precision in these axes, there
is generally an increase in the number of candidate entries being considered
although the variation caused by kf is less consistent for low values of kb. In the
remaining query classes, the join cardinality is usually most favourable at high
kb and relatively independent of kf .

The response of classes Q3 and Q4 show that for both the vertex visits and the
join cardinality, members of the same query class can return different response
patterns over the bisimulation range presented.

5 Discussion and Conclusion

The results in Figure 8 show that when the bisimulation is held constant the
number of reads is generally less for the NSGraph than for the data graph.
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This is a consequence of the localisation of data within the NSGraph, where
queries are themselves very limited in the data that they need to access (such
as K1) the NSGraph does not perform as well as the data graph. In terms of
the computational effort needed to resolve queries over these structures, the
data graph has an advantage. These experiments were carried out on memory
resident data structures. Larger disk-based structures would make performance
more dependent on I/O and therefore show more of an advantage of the NSGraph
in both types of query.

The effect of increasing levels of bisimulation both in a forward and backward
direction is to group together elements with increasingly similar structures. Par-
titioning dictionaries using the same approach similarly results in an increasing
number of separate dictionary structures. Figures 9, 11 and 13 show that the
number of visits needed to resolve the sample queries generally increases in as-
sociation with increasing levels of bisimulation. The implication of the general
trend is therefore that in a mobile pull-based system, the number of cache faults
will usually be minimised by limiting the level of bisimulation. This is consistent
with the outcome that could be expected from increasing the fragmentation of
the data structure representation.

Different query classes show variations in response to different levels of bisim-
ulation. Increasing either the forward or backward bisimulation, whilst keeping
the remaining dimension at zero, does not significantly increase the number of
visits for some queries (e.g. Q1a). Queries such as K3 and the classes Q1 and
Q2 do not benefit significantly from very precise NSGraphs (cases with kf > 1
and kb > 1). Other queries (such as K1) do not show this pattern and the ver-
tex visits needed increase markedly from low levels of bisimulation. Particularly
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useful points exist in this space such as kf = 3 and kb = 3, which minimise both
the likely cache faults and the computational load.

The most common pattern shown in Figures 8–14 suggest that query process-
ing on the NSGraph trades graph precision with the number of vertices being
visited. There are, however data sets where the cardinality and hence computa-
tional cost remain constant while the number of vertices that need to be visited
increases. Figures 9 and 10 show that linear query K1, cannot make use of the
advantages of the NSGraph, i.e. it solely relies on the tag label and data indices
provided.

The implementation of the experimental system covers a subset of the total
functionality possible. Tree pattern queries can be answered using the current
system but it does not generalise to unrestricted branching path expressions. The
in-memory implementation of the data structure limits the maximal size of the
data being queried and also affects the relative influence of processing and I/O
costs on the total query time. For the experimental system, the costs of string
matching and merge-joins dominate the overall costs, whereas for a disk-based
system the I/O performance would play a bigger role. The system retains the
same structure as the basic XML document (although in abbreviated form) and
can consequently be updated using similar techniques. Insertion into or update
of dictionaries may occasionally require restructuring and we plan to investigate
how best to minimise the effects of this.

The results described here were derived using a bottom up approach to em-
bedding the query into the NSGraph structure. It would be possible to use a top
down variant of such an approach as well as a merge join algorithm. These algo-
rithms are likely to produce performance results that differ from those presented
here and may provide opportunities for further improvements.

The hybrid query system is able to deal with queries containing both struc-
tural and atomic value predicates without the need to preserve the original XML
data structure. It shows how to combine two different data groupings, each of
which was previously shown to provide an efficient solution for separate prob-
lems. A numbering scheme for the nodes of the distinct spanning tree combines
the two partial solutions and allows for an easy transition between them. The
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experimental results show that the response is more specific to the actual in-
stance of a query rather than the general query class. For a single query class
the response to varying levels of precision of the data grouping is not uniform.
The cardinality of its constituting predicates has a significant influence on query
execution performance. Local minima in the parameter space suggest particu-
larly useful data groupings that capture the aspects of a source relevant to the
query without unnecessarily increasing the complexity of the NSGraph structure.
Using a structure such as this in a mobile pull-based data intensive application,
power utilisation is minimised by optimising the representation of the data and
hence reducing processor load. It has the added advantage of limiting the need
to download additional data from the server in order to resolve specific queries.
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Abstract. XQuery 1.0, the XML query language which is about to
become a W3C Recommendation, lacks the ability to make persistent
changes to instances of its data model. A number of proposals to ex-
tend XQuery with update facilities have been made lately, including a
W3C Working Draft. In order to investigate some of the different con-
structs that are introduced in these proposals, we define an XQuery-
based update language that combines them. By doing so, we show that
it is possible to give a concise, complete and formal definition of such
a language. We define subsets of this language to examine the relative
expressive power of the different constructs, and we establish the rela-
tionships between these subsets in terms of queries and updates that can
be expressed. Finally, we discuss the relationships between these subsets
and existing XQuery-based update languages.

1 Introduction

With the growing acceptance of XQuery as the main query language for XML
data, there has also been a growing need for an extension that allows updates.
This has lead to several proposals such as [11], [9], UpdateX [10,1], XQuery! [3]
and the XQuery Update Facility [2]. Next to introducing operations for manipu-
lating nodes such as inserting and deleting, these proposals often also introduce
special operations such as the snap operation (in XQuery!) and the transform
operation (in XQuery Update Facility) to extend the expressive power of the lan-
guage, sometimes for queries as well as updates. For example, the snap operation
allows us write queries in XQuery that use side effects and bounded iteration.
Another example is the transform operation that allows us to concisely express
a transformation that copies an entire tree and makes a few minor changes to
it. In this paper we investigate the relative expressive power of such constructs
for expressing queries as well as updates. In addition we examine the strict sep-
aration of expressions in updating and non-updating expressions, and determine
whether this influences the ability to express certain queries and updates.

To investigate the mentioned questions we define LiXQuery+ by taking LiX-
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all the mentioned constructs.
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The remainder of this paper is organized as follows. Section 2 presents the
syntax of LiXQuery+ and discusses its semantics informally. Section 3 presents
the formal framework necessary for defining the semantics. Section 4 defines the
semantics of expressions in LiXQuery+. Section 5 presents the results on the
expressive power of the different constructs 1 . Section 6 relates these results to
existing proposals in the literature and finally Section 7 contains the conclusion.

2 Syntax and Informal Semantics

Due to space limitations, we do not give the complete LiXQuery+ syntax, but
only show how to extend the LiXQuery grammar to obtain LiXQuery+. We start
from the grammar as given in [4], remove the start symbol 〈Query〉 and intro-
duce a new start symbol 〈Program〉, which is a sequence of variable and function
declarations followed by an expression. The syntax of LiXQuery+ programs is
given in Fig. 1 as an abstract syntax, i.e., it assumes that extra brackets and
precedence rules are added for disambiguation. The ellipsis in the non-terminal
〈Expr〉 refer to the right-hand side of this non-terminal in the LiXQuery gram-
mar. The XQuery features that we can express in non-recursive LiXQuery include
FLWOR-expressions, path expressions, typeswitches, node and value compar-
isons, sequence generations (using the “to”-operation), sequence concatenation,
and some simple arithmetic.

〈Program〉 ::= ((〈VarDecl〉 | 〈FunDecl〉) “;”)∗ 〈Expr〉
〈VarDecl〉 ::= “declare” “variable” 〈Var〉 “:=” 〈Expr〉
〈FunDecl〉 ::= “declare” “function” 〈Name〉 “(” (〈Var〉 ( “,” 〈Var〉)∗)? “)” “{” 〈Expr〉 “}”
〈Expr〉 ::= . . . | 〈Insert〉 | 〈Rename〉 | 〈Replace〉 | 〈Delete〉 | 〈Snap〉 | 〈Transform〉
〈Insert〉 ::= “insert” 〈Expr〉 ( “into” | “before” | “after” ) 〈Expr〉
〈Rename〉 ::= “rename” 〈Expr〉 “as” 〈Expr〉
〈Replace〉 ::= “replace” “value” “of” 〈Expr〉 “with” 〈Expr〉
〈Delete〉 ::= “delete” 〈Expr〉
〈Snap〉 ::= “snap” ((“unordered” (“nondeterministic” | “deterministic”)) |

“ordered”) “{” 〈Expr〉 “}”
〈Transform〉 ::= “transform” “copy” 〈Var〉 “:=” 〈Expr〉 “modify” 〈Expr〉 “return” 〈Expr〉

Fig. 1. Syntax of LiXQuery+

We assume the reader is already familiar with XQuery. We therefore only
describe the semantics of the new expressions and sketch the modifications to
the semantics of the other expressions.

We first describe the semantics of the update expressions, i.e., the “insert”,
“rename”, “replace” and “delete” operations. The “insert” operation makes
a copy of the nodes in the result of the first expression and adds these (after-
wards) at the position that is indicated by either “into”, “before”, or “after”
and which is relative to the singleton result node of the second expression. The
“rename” operation renames an element or an attribute, and the “replace”
operation replaces the value of a text or an attribute node with a new atomic

1 We only give sketches of the proofs, for the full proofs we refer to [5].
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value. Both operations are node-identity preserving, i.e., the identity of the up-
dates node is not changed. The “delete” expression removes the incoming edges
for a set of nodes, which can then be garbage collected iff they are not accessible
anymore through variable bindings or the result sequence.

For most expressions we assume a snapshot semantics, which intuitively means
thata snapshotof the store isbeingmadebefore theevaluationof theexpressionand
the resulting updates are not yet performed, but instead they are added to a list of
pending updates. There are four exceptions to this: the “snap” operation, expres-
sions at the end of a program, expressions at the right-hand side of a variable decla-
rationandthe“transform”expression.Wediscuss these four cases in the following.

A “snap” operation applies the list of pending updates that is generated by
the subexpression to the store and returns an empty update list. If the snap ex-
pression contains the keyword “ordered”, then the pending updates are applied
in the same order as they were generated. Else the order of application is un-
defined and the keywords “deterministic” and “nondeterministic” specify
whether the order of the application of pending updates is allowed to affect the
set of possible result stores. As an illustration of the “snap” expression consider:

for $d in //dept return (
snap ordered { replace value of $d/salarytotal with 0 },
for $e in $d/emp return
snap ordered {

replace value of $d/salarytotal
with $d/salarytotal + $e/salarytotal } )

This expression computes for each department the total of the salaries of its
employees. Note that if we replace the two “snap” operations with one big “snap”
operation around the whole expression then it will compute for each department
the salary of the last employee since the value of $d/salarytotal is not updated
during the evaluation.

When evaluating an expression at the end of a program or the right-hand side of
a variable declaration, an implicit top-level “snap ordered” is presumed, i.e., the
list of pending updates that is generated by the expression is applied to the store.

The final exception to the snapshot semantics is the “transform” operation.
It makes a deep copy of the result of the first subexpression, evaluates the second
subexpression and applies the resulting pending updates provided these are only
on the deep copy, and finally evaluates the return clause and returns its result.
As an illustration of the “transform” expression consider:

transform copy $d := //dept[@name = "Security"]
modify delete $d//*[@security-level > 3]
return $d

This expression retrieves all information about the security department except
the subtrees which have a security level higher than three. Note that the trans-
form operation cannot update an existing fragment in the XML store.

Finally, all other operations were already in LiXQuery and their semantics is
now extended in such a way that the result is not only the result sequence, but
also the concatenation of all lists of pending updates that were generated during
the evaluations of subexpressions.
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3 Formal Framework

We now proceed with the formal semantics of LiXQuery+. Due to space lim-
itations, we will not fully introduce all concepts of LiXQuery here, but refer
to [7] for some examples and a more elaborated introduction. We assume a set
of strings S and a set of names N ⊆ S, which contains those strings that may
be used as tag names. The set of all atomic values is denotes by A and is a
superset of S. We also assume four countably infinite sets of nodes Vd, Ve, Va

and Vt which respectively represent the set of document, element, attribute and
text nodes. These sets are pairwise disjoint with each other and the set of atomic
values. The set of all nodes is denoted as V , i.e., V = Vd∪Ve∪Va∪Vt. In the rest
of this paper, we use the following notation: v for values, x for items, n for nodes,
r for roots, s for strings and names, f for function names, b for booleans , i for
integers, e for expressions and p for programs. We denote the empty sequence
as 〈〉, non-empty sequences as for example 〈1, 2, 3〉 and the concatenation of two
sequences l1 and l2 as l1 ◦ l2. Finally, if l is a list or sequence, then the set of
items in l is denoted as Set(l) and the bag (unordered list) representation of l
is denoted by Bag(l).

3.1 XML Store

Expressions are evaluated against an XML store which contains XML fragments.
This store contains the fragments that are created as intermediate results, but
also the web documents that are accessed by the expression. Although in practice
these documents are materialized in the store when they are accessed for the first
time, we assume here that all documents are in fact already in the store when
the expression is evaluated.

Definition 1 (XML Store). An XML store is a 6-tuple St = (V, E,�, ν, σ, δ):

– V is a finite subset of V2;
– (V, E) is a directed acyclic graph where each node has an in-degree of at most

one, and hence it is composed of trees; if (m, n) ∈ E then we say that n is a
child of m; we denote by E∗ the reflexive transitive closure of E;

– � is a total order on the nodes of V ;
– ν : V e ∪ V a → N labels element and attribute nodes with their node name;
– σ : V a ∪ V t → S labels attribute and text nodes with their string value;
– δ : S → Vd a partial function that associates a URI with a document node.

Moreover, some additional properties must hold for such a tuple in order to be
a valid XML store. We refer to the technical report [6] on LiXQuery+ for these
properties.

Note that this definition slightly differs from our original definition of an XML
Store [7], since we now have included the document order in the store instead
of the sibling order. In the rest of this paper we will write VSt to denote the set
of nodes of the store St, and similarly we write ESt, �St, νSt, σSt and δSt to
denote respectively the second to the sixth component of the 6-tuple St.
2 We write V d to denote V ∩ Vd, and use a similar notation for V e, V a, and V t.
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3.2 Evaluation Environment

Expressions are evaluated against an environment. Assuming that X is the set
of LiXQuery+-expressions this environment is defined as follows.

Definition 2 (Environment). An environment of an XML store St is a tuple
En = (a,b,v,x) with a partial function a : N → N ∗ that maps a function name
to its formal arguments, a partial function b : N → X that maps a function
name to the body of the function, a partial function v : N → (V ∪A)∗ that maps
variable names to their values, and x which is either undefined (⊥) or an item
of St and indicates the context item.

If En is an environment, n a name and y an item then we let En[a(n) �→ y]
(En[b(n) �→ y], En[v(n) �→ y]) denote the environment that is equal to En
except that the function a (b, v) maps n to y. Similarly, we let En[x �→ y]
denote the environment that is equal to En except that x is defined as y if
y �= ⊥ and undefined otherwise.

3.3 List of Pending Updates

A new concept in the LiXQuery+ semantics, when compared to LiXQuery, is the
list of pending updates. This list contains a number of primitive update opera-
tions which have to be performed after the evaluation of the entire expression.

Definition 3 (Primitive Update Operations). Let n, n1, . . . , nm be nodes
in a store St, and s ∈ S. A primitive update operation on the store St is
one of following operations: insBef(n, 〈n1, . . . , nm〉), insAf t(n, 〈n1, . . . , nm〉),
insInto(n, 〈n1, . . . , nm〉), ren(n, s), repV al(n, s), del(n).

Before proceeding with the formal semantics, we first give some intuition about
these primitive update operations. The operation insBef (insAf t, insInto)
moves nodes n1 to nm before (after, into) the node n. In the formal semantics
of LiXQuery+, we will see that the nodes n1 to nm are always copies of other
nodes. Note that the operation insInto can have several result stores, since the
list of nodes can be inserted in an arbitrary position among the children. The
operations ren and repV al change respectively the name and the value of n to s.
Finally, the operation del removes the incoming edge from n and hence detaches
the subtree rooted at n. Note that del can, similar to insInto, have more than
one result store, due to the resulting document order. More precisely, the subtree
that is detached by a del operation has to be given another place in document
order, since otherwise this tree would be mixed in document order with the tree
from which we deleted the edge, which is a violation of one of the additional
properties of Definition 1. The exact location in document order of the detached
subtree is chosen in a non-deterministic manner.

We write St � o ⇒U St′ to denote that applying the primitive update opera-
tion o to St can result in the store St′. The definition of ⇒U is given in Fig. 2 by
means of inference rules. Each rule consists of a set of premises and a conclusion
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St′ = St[ν(n) �→ s]

St � ren(n, s) ⇒U St′

St′ = St[σ(n) �→ s]

St � repV al(n, s) ⇒U St′′

St′ = (St \ n) ∪ St[n]

St � del(n) ⇒U St′

St \ n1 \ . . . \ nm = St′ \ n1 \ . . . \ nm = St′′

St[n1] = St′[n1] . . . St[nm] = St′[nm]
(n, n1) ∈ ESt′ . . . (n, nm) ∈ ESt′
n1 �St′ n2 . . . nm−1 �St′ nm

St � insInto(n, 〈n1, . . . , nm〉) ⇒U St′

n1, . . . , nm ∈ Ve ∪ Vt

St \ n1 \ . . . \ nm = St
′ \ n1 \ . . . \ nm = St

′′

St[n1] = St
′[n1] . . . St[nm] = St

′[nm]
n′ ∈ VSt′′ ⇒ (n �St′ n′ ⇔ nm �St′ n′)

n �St′ n1
n1 �St′ n2 . . . nm−1 �St′ nm

St � insAft(n, 〈n1, . . . , nm〉) ⇒U St′

n1, . . . , nm ∈ Ve ∪ Vt

St \ n1 \ . . . \ nm = St′ \ n1 \ . . . \ nm = St′′

St[n1] = St
′[n1] . . . St[nm] = St

′[nm]
n′ ∈ VSt′′ ⇒ (n′ �St′ n ⇔ n′ �St′ n1)

nm �St′ n
n1 �St′ n2 . . . nm−1 �St′ nm

St � insBef(n, 〈n1, . . . , nm〉) ⇒U St′

Fig. 2. Semantics of the Primitive Update Operations

of the form St � o ⇒U St′. The free variables in the rules are always assumed to
be universally quantified. In these rules we use some additional notations, which
we will now explain.

Let St be a store and n an element of VSt. We define V n
St as {n′|(n, n′) ∈ E∗

St},
i.e., the set of nodes in the subtree rooted at n in St. The projection of St to a
set of nodes N is denoted by ΠN (St) and is the restriction of all components of
St to N instead of VSt. The restriction of St to n is defined as ΠV n

St
(St) and is

denoted by St[n]. The exclusion of n from St is defined as ΠVSt−V n
St

(St) and is
denoted by St \ n. For both restriction and exclusion it is not hard to see that
the projection always results in a store. Finally, if St is a store, n a node in St,
and s a string, then we let St[δ(n) �→ s] (St[ν(n) �→ s]) denote the store that is
equal to St except that δSt′(n) = s (νSt′(n) = s).

We now define a list l of pending updates over a store St as a list of primitive
update operations on St. The set of affected nodes of l is denoted by Targets(l)
and defined as the set of nodes that occur as the first argument in a primitive
update operation appearing in l.

The notation St � o ⇒U St′, used to specify the semantics of primitive update
operations, is overloaded for sequences of primitive update operations. For such
a sequence l = 〈o1, . . . , om〉 we define St � l ⇒U St′ by induction on m such that
(1) St � 〈〉 ⇒U St and (2) if St � 〈o1, . . . , om−1〉 ⇒U St′ and St′ � om ⇒U St′′

then St � 〈o1, . . . , om〉 ⇒U St′′.
For some lists of pending updates, we can reorder the application of these

primitive update operations without changing the semantics. Therefore we say
that l is execution-order independent if for every sequences l′ such that Bag(l) =
Bag(l′) and store St′ it holds that St � l ⇒U St′ iff St � l′ ⇒U St′.

Finally, the following lemma gives an algorithm to decide execution-order
independence of a list of pending updates:

Lemma 1. A list of pending updates l = 〈o1, . . . , om〉 over a store St is execution-
order dependent iff there are two primitive update operations oi and oj in l such that
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i �= j, and there are n, n1, . . . , nm, n′
1, . . . , n

′
l ∈ VSt and s, s′ ∈ S, such that s �= s′,

〈n1, . . . , nm〉 �= 〈n′
1, . . . , n

′
l〉 and one of the following holds:

- oi = ren(n, s) ∧ oj = ren(n, s′)
- oi = repV al(n, s) ∧ oj = repV al(n, s′)
- oi = insBef(n, 〈n1, . . . , nm〉) ∧ oj = insBef(n, 〈n′

1, . . . , n
′
l〉)

- oi = insAf t(n, 〈n1, . . . , nm〉) ∧ oj = insAf t(n, 〈n′
1, . . . , n

′
l〉)

3.4 Program Semantics

We now define the semantics of programs. We write (St, En) � p ⇒ (St′, v) to
denote that the program p, evaluated against the XML store St and environment
En of St, can result in the new XML store St′ and value v of St′. Similarly,
(St, En) � e ⇒E (St′, v, l) means that the evaluation of expression e against
St and En may result in St′, v, and the list of pending updates l over St′. The
semantics of expressions is given in Section 4. Finally, the semantics of a program
is defined by following reasoning rules:

St, En[a(f) �→ 〈s1, . . . sm〉][b(f) �→ e] � p ⇒ (St
′
, v

′)

St, En � declare function f ($s1, . . . , $sm){ e } ; p ⇒ (St
′
, v

′)

St, En � e ⇒ (St′, v) St′, En[v(s) �→ v] � p ⇒ (St′′, v′′)

St, En � declare variable $s := e ; p ⇒ (St′′, v′′)

(St, En) � e ⇒E (St′, v, l) St′ � l ⇒U St′′

(St, En) � e ⇒ (St′′, v)

Note that in the last rule, v is a value of St′′, since VSt′ = VSt′′ .

3.5 Auxiliary Notions

We conclude this section by giving some notational tools for the rest of this
paper. First, we define some auxiliary operations on stores.

Two stores St and St′ are disjoint, denoted as St∩St′ = ∅, iff VSt ∩VSt′ = ∅.
The definition of the union of two disjoint stores St and St′, denoted as St∪St′,
is straightforward. The resulting document order is extended to a total order in
a nondeterministic way.

An item of an XML store St is an atomic value in A or a node in St. Given
a sequence of nodes l in an XML store St we let OrdSt(l) denote the unique
sequence l′ = 〈y1, . . . , ym〉 such that Set(l) = Set(l′) and y1 �St . . . �St ym.

Two trees defined by two nodes n1 and n2 in a store St can be equal up to
node identity, in which case we say that they are deep equal and denote this as
DpEqSt(n1, n2).

4 Semantics of Expressions

Similar to LiXQuery, the semantics of LiXQuery+ expressions is specified by
means of inference rules. Each rule consists of a set of premises and a conclusion
of the form (St, En) � e ⇒E (St′, v, l). The free variables in the rules are assumed
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to be universally quantified. Due to the lack of space we only give the rules for
the expressions that are new in LiXQuery+ and illustrate how the other rules
can be obtained.

4.1 Basic Update Expressions

The delete results into a set of pending updates which will delete the incoming
edges of the selected nodes.

(St, En) � e ⇒E (St1, 〈n1, . . . , nm〉, l)

(St, En) � delete e ⇒E (St1, 〈〉, l ◦ 〈del(n1), . . . , del(nm)〉)

The rename and replace value expressions evaluate two subexpressions
which have to result in respectively one node and one string value. Similar to
the delete expression we add new primitive operation to the list of pending up-
dates. For the exact inference rules we refer to the technical report[6]. An insert
expression makes a copy of the nodes that are selected by the first subexpres-
sion and puts these copies at a certain place w.r.t. the node that is returned by
the second expression. The position is indicated by either “before”, “after”,
or “into”. In case of insertion into a node n, the relative place of the copied
nodes among the children of n is chosen arbitrarily, but the relative order of the
copies has to be preserved. We show the semantics for the “insert ... into ...”
expression.

(St, En) � e1 ⇒E (St1, 〈n〉, l1)
(St1, En) � e2 ⇒E (St2, 〈n1, . . . , nm〉, l2) St′ = St2 ∪ St′

1 ∪ . . . ∪ St′
m

DpEqSt′ (n1, n′
1) . . . DpEqSt′(nm, n′

m) V
n′
1

St′
1

= VSt′
1

. . . V
n′

m
St′

m
= VSt′

m

(St, En) � insert e2 into e1 ⇒E (St3, 〈〉, l1 ◦ l2 ◦ 〈insInto(n, 〈n′
1, . . . , n′

m〉)〉)

4.2 Snap Expression

The snap operation comes in three different flavours: ordered, unordered deter-
ministic and unordered nondeterministic. The ordered mode specifies that the
pending updates have to be applied in the same order as they were generated,
the unordered deterministic mode requires that the list of pending updates has
to be execution-order independent, while the unordered nondeterministic mode
applies the pending updates in an arbitrary order.

(St, En) � e ⇒E (St′, v, l) St′ � l ⇒U St′′

(St, En) � snap ordered { e } ⇒E (St′′, v, 〈〉)

(St, En) � e ⇒E (St′, v, l) Bag(l) = Bag(l′) St′ � l′ ⇒U St′′

(St, En) � snap unordered nondeterministic { e } ⇒E (St′′, v, 〈〉)

(St, En) � e ⇒E (St′, v, l)
l is execution-order independent Bag(l) = Bag(l′) St

′ � l
′ ⇒U

St
′′

(St, En) � snap unordered deterministic { e } ⇒E (St′′, v, 〈〉)
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4.3 Transform Expression

The transform expression first evaluates the first subexpression which should
result in a sequence of nodes. Then it makes deep copies of each of these nodes,
placed relatively in document order as the original nodes were ordered in the
result sequence. The second subexpression is evaluated with the variable bound
to the deep-copied nodes, and if the resulting list of pending updates only af-
fects nodes in the deep copies then these are applied to the store and the last
subexpression is evaluated.

(St, En) � e1 ⇒E (St1, 〈n1, . . . , nm〉, 〈〉)
St′

1 = St1 ∪ St1,1 ∪ . . . ∪ St1,m DpEqSt′
1
(n1, n′

1) . . . DpEqSt′
1
(nm, n′

m)

V
n′
1

St1,1
= VSt1,1 . . . V

n′
m

St1,m
= VSt1,m n′

1 �St′
1

n′
2 �St′

1
. . . �St′

1
n′

m

En1 = En[v(s) �→ 〈n′
1, . . . , n′

m〉] (St′
1, En1) � e2 ⇒E (St2, v, l)

Targets(l) ⊆ VSt′
1
− VSt1 St2 � l ⇒U St′

2 (St′
2, En1) � e3 ⇒E (St3, v′, 〈〉)

(St, En) � transform copy $s:= e1 modify e2 return e3 ⇒E (St3, v′, 〈〉)

4.4 Other Expressions

To illustrate the semantics of expressions already in LiXQuery we present the
reasoning rules for the concatenation and the for-expression. The other rules
can be obtained from those in [7] in a similar way by extending them such that
the lists of pending updates of the subexpressions are concatenated.

(St, En) � e1 ⇒E (St1, v1, l1) (St1, En) � e2 ⇒E (St2, v2, l2)

(St, En) � e1, e2 ⇒E (St2, v1 ◦ v2, l1 ◦ l2)

(St, En) � e ⇒E (St0, 〈x1, . . . , xm〉, l) (St0, En[v(s) �→ x1][v(s′) �→ 1]) � e′ ⇒E (St1, v1, l1)
. . . (Stm−1, En[v(s) �→ xm][v(s′) �→ m]) � e′ ⇒E (Stm, vm, lm)

(St, En) � for $s at $s′ in e return e′ ⇒E (Stm, v1 ◦ . . . ◦ vm, l ◦ l1 ◦ . . . ◦ lm)

5 Expressive Power of Fragments of LiXQuery+

In this section we compare the relative expressive power of a number of constructs
of LiXQuery+ by looking at different fragments of the language that do or do
not contain these constructs.

5.1 LiXQuery+ Fragments

The motivation for these fragments follows by their correspondence to existing
query and update languages for XML, based on XQuery. In Section 6 we discuss
the relation between these fragments and the existing update languages. First,
we define the following four fragments of LiXQuery+:
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– The fragment XQ corresponds intuitively to non-recursive XQuery. More
precisely, the non-terminals 〈Insert〉, 〈Rename〉, 〈Replace〉, 〈Delete〉, 〈Snap〉,
and 〈Transform〉 are removed from LiXQuery+, as well as 〈FunDecl〉.

– The fragment XQt corresponds to non-recursive XQuery extended with
transformations. It is defined as LiXQuery+ without 〈Snap〉 and 〈FunDecl〉
and where 〈Insert〉, 〈Rename〉, 〈Replace〉, and 〈Delete〉 only occurs within
the body of the “modify” clause of a 〈Transform〉 expression.

– The fragment XQ+ corresponds to non-recursive XQuery extended with
the update operations, but without the 〈Snap〉 operation. It is defined as
LiXQuery+without 〈Snap〉 and 〈FunDecl〉.

– The fragment XQ! corresponds to non-recursive XQuery extended with up-
dates and snap operations. It is defined as LiXQuery+ without 〈FunDecl〉.

We can add (recursive) function definitions to all these fragments, which we
denote by adding a superscript R to the name of the fragments.

5.2 Expressiveness Relations Between Fragments

It seems intuitive to say that two programs express the same update function
if they map the same input stores to the same output stores. However, a pro-
gram can make changes to the store that cannot be observed, since the modified
nodes are not reachable through the result sequence of the program or through
document calls. Therefore, we assume that the result store of a program does
not contain nodes that are no longer reachable, since such nodes can be safely
garbage collected. More precisely, the garbage collection is defined by the func-
tion Γv that, given a sequence v, maps a store St to a new store St′ by removing
all trees from St for which the root node is not in the range of δSt and for which
no node of the tree is in v.

We now define the query and update relations that correspond to LiXQuery+

programs. Since programs can return sequences over another store than the input
store, we only consider mappings from a store to a sequence of atomic values
in this paper, i.e., we only look at queries that do not return nodes. The query
relation of a LiXQuery+ program p is the relation RQ

p between stores St and
sequences of atomic values v such that (St, v) ∈ RQ

p ⇔ ∃St′ : (St, (∅, ∅, ∅,⊥)) �
p ⇒ (St′, v). The update relation of a LiXQuery+ program p is the relation RU

p

between stores St and St′ such that (St, St′) ∈ RU
p ⇔ ∃St′′, v : (St, (∅, ∅, ∅,⊥

)) � p ⇒ (St′′, v) ∧ Γv(St′′) = St′.
The following two partial orders are defined on LiXQuery+ fragments:

- XF1 �Q XF2 iff ∀p ∈ XF2 : ∃p′ ∈ XF1 : RQ
p = RQ

p′ .
- XF1 �U XF2 iff ∀p ∈ XF2 : ∃p′ ∈ XF1 : RU

p = RU
p′ .

Based on these partial orders �Q and �U we define in the usual way the strict
partial orders �Q and �U , and the equivalence relations ≡Q and ≡U which are
called query-equivalence and update-equivalence, respectively. Note that XF1 �≡Q

XF2 ⇒ XF1 �≡U XF2, since we can translate in all fragments a result sequence
of atomic values to a node containing a sequence of nodes that each contain one
of the atomic values, and vice versa.
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XQR
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XQR
t

XQR
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XQR
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(a) (b)

Fig. 3. Relations between the fragments in terms of expressive power of (a) mappings
from stores to sequences of atomic values and (b) mappings from stores to stores

Theorem 1. For the graph in part (a) of Fig. 3 and for all fragments XF1, XF2
it holds that XF1 ≡Q XF2 ⇐⇒ XF1 and XF2 are within the same node, and
XF1 �Q XF2 ⇐⇒ there is a directed path from the node containing XF2 to
the node containing XF1.

Proof. (Sketch) This theorem will be proven in the remainder of this section. We
now sketch which lemmas are needed to complete this proof. From Lemma 4 it
follows that XQ ≡Q XQt ≡Q XQ+, and from Lemma 2, Lemma 3, and Lemma 5
it follows that XQR ≡Q XQR

t ≡Q XQR
+ ≡Q XQR

! . From Lemma 7 and Lemma 8
follows that XQ! �Q XQ+ and from Lemma 9 follows that XQR

! �Q XQ!.

Theorem 2. For the graph in part (b) of Fig. 3 and for all fragments XF1, XF2
it holds that XF1 ≡U XF2 ⇐⇒ XF1 and XF2 are within the same node, and
XF1 �U XF2 ⇐⇒ there is a directed path from the node containing XF2 to
the node containing XF1.

Proof. (Sketch) This theorem will be proven in the remainder of this section.
We now sketch which lemmas are needed to complete this proof. From Lemma 3
it follows that XQR ≡U XQR

t and from Lemma 2 follows that XQR
+ ≡U XQR

! .
From Lemma 7 and Lemma 8 follows that XQ! �U XQ+ and from Lemma 9
follows that XQR

! �U XQ! and XQR
t �U XQt. Moreover, we know by Lemma 6

that XQ+ �U XQt and XQR
+ �U XQR

t . By Lemma 10 and Lemma 11 we get
that XQt �U XQ. Finally, it follows from Lemma 6 and Lemma 9 that XQ!
and XQ+ are incomparable with XQR.
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5.3 Expressibility Results

In this subsection, we present the lemmas that are used to prove the query- or
update-equivalence of LiXQuery+ fragments.

Lemma 2. For all XQR
! programs p it holds that there is a XQR

+ program p′

that has the same update relation and the same query relation.

Proof. (Sketch) In [8] we have shown that node construction in XQR does not
add expressive power for “node-conservative deterministic queries”. This was
shown by encoding the store into a sequence of atomic values and simulating
expressions with node construction to manipulate this encoded store. Using a
similar simulation technique we can encode the output store, output sequence
and list of pending updates in one sequence. Note that we have to use recursive
functions to simulate the behavior of for-loops, since the encoded result store of
one iteration has to be the input encoded store of the next iteration. Moreover,
to ensure a correct computation, we have to apply updates on the encoded
store as soon as they are applied in the XQR

! expression. Note also that in
the simulation we have to use node construction as source of non-determinism
in order to have the same update relations. This can be done by expressions
like (element {"a"} {()}) << (element {"a"} {()}). Finally, we obtain the
result store by performing the (encoded) lists of pending updates and performed
updates in the correct order.

Lemma 3. For all XQR
t programs p it holds that there is a XQR program p′

that has the same update relation and the same query relation.

Proof. (Sketch) We use the same simulation as sketched in the proof of Lemma 2.
Since the nodes of the input store are not modified by transform-expressions, we
only extend the input store. The result store can be obtained at the end of the
simulation by using a recursive function that creates new nodes for nodes that
are in the encoded output store but not in the input store.

Lemma 4. For all XQ+ programs p it holds that there is a XQ program p′ that
has the same query relation.

Proof. (Sketch) Similar to the proof of Lemma 2 and Lemma 3 we can simulate
all expressions to work on an encoded store. However, since we now do not have
recursive functions to do the simulation, we have to keep track of the transitive
closure of E, which we can obtain by using the descendant axis. It can be shown
that all updates that are expressible in XQ+ can be simulated, since we can
express the corresponding updates on the encoded descendant relation in XQ.

Lemma 5. For all XQR
! programs p it holds that there is a XQR program p′

that has the same query relation.

Proof. (Sketch) The proof of this lemma is similar to that of Lemma 2 and
Lemma 4. However, at the end we do not have to create the result store, but it
suffices to return the result sequence, which only contains atomic values.
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5.4 Inexpressibility Results

We now present the lemmas that are used to show that two LiXQuery+ fragments
are not query- or update-equivalent.

Lemma 6. There are XQ+ programs which have an update relation that we
cannot express by a program in XQR

t .

Proof. (Sketch) This can easily be seen by the fact that in XQ+ we can modify
nodes from the input store, while we cannot do this in XQR

t .

Lemma 7. For all XQ+ programs p it holds that the largest number (atomic
value) in the output sequence is polynomially bounded by the number of nodes
in the input store, the length of the longest sequence in the environment and the
largest number (atomic value) in both the store and the environment.

Proof. (Sketch) This can be shown by induction on the structure of the program.
In [4] this was shown for the fragment that we refer to as XQ in this paper.
From the simulation used to prove Lemma 4 it holds that the same polynomial
upper bounds also holds for XQ+ expressions, because the size of the simulating
expression is polynomially bounded by the size of the simulated expression.

Lemma 8. XQ! can express all primitive recursive functions over integers.

Proof. (Sketch) We can give a translation that maps primitive recursive func-
tions to XQ! expressions with one free variable, which models the arguments of
such functions, i.e., tuples of natural numbers. It can easily be seen that the zero
function, the succesor function, the projection and the composition can already
be expressed in XQ. Primitive recursion can be simulated in XQ! by using the
for-expression and the snap operation, which allows us to do bounded iteration.

Lemma 9. There are programs in XQR which have a query relation that we
cannot express by a program in XQ!.

Proof. (Sketch) It can be shown that all XQ! programs can be simulated by
Turing machines that always halt, while XQR is Turing-complete.

Lemma 10. For all XQ programs there is a depth d such that all nodes that are
in the result store, but not in the input store and that have at least d ancestors
are deep-equal to nodes in the input store.

Proof. (Sketch) This property can be shown by induction on the structure of the
program. Only node construction can create new nodes and the result is a new
tree in the store, where all nodes except for the root are deep-equal to nodes
that already existed, i.e., that are in the result store of the subexpression.

Lemma 11. The property of Lemma 10 does not hold for XQt programs.

Proof. (Sketch) This XQt program does not satisfy the property of Lemma 10:

transform copy $x := doc("a.xml") modify (for $y in $x//a return
rename $y as "b") return $x
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6 Relation to Other XQuery-Based Update Languages

In this section we briefly discuss the relationship of various LiXQuery+ fragments
and a number of existing proposals that extend XQuery with updates.

The first proposal that we consider is UpdateX [10,1] which corresponds
closely to XQ+ and with XQR

+ if recursive function definitions are allowed.
They have a notion similar to a list of pending updates and the updates in this
list are applied in the order that they are generated, as in XQ+. The constructs
of XQ+ that are not in UpdateX include transform and rename operations.
However, as can be seen from the proof of Lemma 4 it is possible to simulate
programs that contain transform expressions with programs that do not.

The second proposal that we consider is XQuery! which is an extension of
UpdateX with a snap operation. Hence it closely corresponds to XQ! and with
XQR

! if recursive function definitions are allowed. A small difference is that in
UpdateX the semantics of the implicit top-level snap expressions is of the type
unordered deterministic, a mode that they call conflict-free.

The final and third proposal that we consider is the XQuery Update Facility
which corresponds closely to XQ+ and with XQR

+ if recursive function defini-
tions are allowed. The semantics of this proposal differs in some details with the
semantics of LiXQuery+. For example, their semantics of the “replace value
of” operation allows to change the content of element nodes, which can be simu-
lated in LiXQuery+. This proposal has an explicit “transform” operation, which
the other two proposals lack but is included in XQ+. An important difference
is that at the time of writing the working draft does not allow to mix updat-
ing and non-updating expressions anymore, i.e., queries and updates are split.
We propose that, as is demonstrated by the presented syntax and semantics
of LiXQuery+, it is straightforward to define the semantics of a language that
does not have this restriction. Moreover, it can be shown that for all LiXQuery+

programs p there exists an equivalent program p′ where all queries and updates
are split, i.e., there are no subexpressions that return both a non-empty result
sequence and a non-empty list of pending updates. To prove this, we can use
again a simulation of the store and list of pending updates, similar as used in
the proof of Lemma 5. We can do this as follows. First we declare a variable
as the encoded result of the simulating expression. Note that the simulating ex-
pression generates no real pending update list, only an encoded one. Then we
extract and perform the encoded list of pending updates, and bind the resulting
empty sequence to a variable. Finally, we can extract the result sequence from
the encoded result sequence and return this as result of the program.

7 Conclusion

In order to investigate the relative expressive power of some special constructs
that were introduced in XQuery-based update languages, we define LiXQuery+

which combines these constructs. The syntax and semantics of this language is
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formally defined, demonstrating that this can be done in a concise and complete
fashion. We compare several subsets of LiXQuery+ in terms of queries and up-
dates that can be expressed. One observation that is made is that the “snap”
operation adds expressive power, even for expressing queries, because it allows
the simulation of primitive recursive functions without using recursive function
definitions. Another observation is that the “transform” operation allows the
construction of new trees that would require recursion in XQuery.

In future research we intend to look at the relative expressive power of the
different types of “snap” operations. Another subject of interest is finding better
characterizations of the expressive power of the presented fragments. For exam-
ple, we suspect that XQ! can express exactly all primitive recursive functions
over XML trees.
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Abstract. We describe an efficient method for the incremental valida-
tion of XML documents after composite updates. We introduce the class
of Bounded-Edit (BE) DTDs and XML Schemas, and give a simple incre-
mental revalidation algorithm that yields optimal performance for them,
in the sense that its time complexity is linear in the number of operations
in the update. We give extensive experimental results showing that our
algorithm exhibits excellent scalability. Finally, we provide a statistical
analysis of over 250 DTDs and XML Schema specifications found on the
Web, showing that over 99% of them are in fact in BE.

1 Introduction

Although originally designed for large-scale Web content publishing, XML has
become the preferred format for representing and exchanging semistructured
data [1], and is gaining popularity as an encoding format in standard office ap-
plications, such as text editors [7,13]. XML documents often refer to a document
schema, usually a Document Type Definition (DTD) [8] or an XML Schema
specification (XSD) [20], that defines the legal ways of arranging the markup
tags. A document is said to be valid with respect to a schema if its markup is
consistent with the specifications in that schema. Validity is an important prop-
erty, as it specifies that the document is syntactically and structurally correct;
thus, validity must be preserved whenever the document is updated.

Checking whether a document is valid from scratch (i.e., static validation)
requires reading the entire document once [19]. However, in applications where
the XML document is too large (e.g., Web databases1) or where updates are
frequent (e.g., users editing office documents), scanning the entire document af-
ter every update becomes prohibitively slow. The incremental validation of a
valid document consists of checking whether an update results in another valid
document before the changes are made [3,4,6,11,16]. In essence, incremental val-
idation consists of recording all steps during the static validation, and, whenever
possible, modifying these steps in response to updates.

1 MEDLINE [14] is a 45GB bibliographic database about biomedical research and the
clinical sciences; and PIR-NREF [18] is an 18GB collection of protein sequence data
from several genome sequencing projects.

S. Amer-Yahia et al. (Eds.): XSym 2006, LNCS 4156, pp. 107–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In previous work [4], we discussed efficient methods for the incremental val-
idation of XML documents after atomic updates. In particular, we described a
large class of document schemas, called 1,2-conflict free, that accounts for most
schemas used in practice and admits an incremental validation algorithm that
runs in O(log n) time, where n is the size of the document. In this paper we dis-
cuss a generalization of that class in which incremental validation of a composite
update with k atomic operations can be done in O(k log n) time. Moreover, we
give a statistical analysis of over 26,000 content models, from over 250 DTDs
and XSDs found on the Web, showing that our methods are applicable to over
99% of these content models.

Outline. The remainder of this paper is organized as follows. We discuss related
work in Section 2, and introduce the background and notation used in the paper
in Section 3. We present our incremental validation algorithm and the class of
bounded-edit document schemas in Section 4. In Section 5, we provide a statis-
tical analysis of over 250 DTDs and XSDs found on the Web, while in Section 6
we present an experimental analysis of our algorithm on XMark documents of
varying sizes. Finally, we conclude in Section 7.

2 Related Work

The traditional model for incremental re-computation is to maintain some aux-
iliary information besides the data [17]; in this model, the complexity per-update
is the complexity of recomputing both the result and the auxiliary data from
the input, the update, the old result and auxiliary data. The space complexity is
measured by the size of the auxiliary information only.

In the following, we assume that elements in the document are accessed
through an indexed store kept on secondary memory, and that reading/writing
individual elements takes logarithmic time (in the size of the document).

Papakonstantinou and Vianu[16] propose an incremental validation method
that uses complex data structures and algorithms closely related to those in
[4,17]. In that work, a separate balanced tree is used for storing the children of
each element in the document. The space complexity of their method is O(ns2)
for DTDs and O(ns4) for Specialized DTDs [15], where n is the size of the docu-
ment and s is the size of its DTD/schema. (Specialized DTDs are an abstraction
of XML Schema allowing instances of different specializations of the same type
to occur in the content of the same element). Using these data structures, the
per-update complexity of their incremental validation algorithms after a com-
posite update with k operations is O(k log2 n) for (fixed) DTDs, and O(k log3 n)
for Specialized DTDs.

We take a different approach, in that we use simple data structures that incur
substantially smaller storage overhead, thus being more attractive from a sys-
tem implementation point of view. Also, we focus on characterizing the classes
of DTDs and schemas for which incremental validation can be done efficiently
using those data structures. We use a single tree for storing the entire docu-
ment, and the storage costs for auxiliary information in our approach are as
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follows. For DTDs, the space requirements are O(n log s) in general, and con-
stant for Conflict-Free DTDs [4]; for Specialized DTDs, the space requirements
are increased by a factor of O(t2 log t), where t is the number of distinct element
types in the schema. Finally, our incremental validation algorithms for compos-
ite updates require O(n log n) time in the worst case and O(k log n) time for
bounded-edit (Section 4.2) DTDs and schemas.

3 Definitions

For the moment, we consider the problems of validation and incremental val-
idation with respect to DTDs, we will discuss handling XSDs later. A DTD
consists of sets of rules for specifying the types of elements and their attributes.
An element specification rule assigns a content model to elements of a given
label. Element specification rules constrain the structure of the document, by
specifying the valid ways of nesting the elements in the document.

Let Σ be a set of element labels. Content models are given as 1-unambiguous
regular expressions [9] of the form E := ε | a | #PCDATA | (E) | E|E | E, E |
E∗ | E+ | E?, where: ε is the empty string, a ∈ Σ, #PCDATA represents textual
content, E|E is the union operator, E, E is the concatenation operator, E∗ is
the usual Kleene star operator, and E+ and E? are variations of the Kleene
star that restrict the number of occurrences to at-least-one, and zero-or-one,
respectively. That is, E+ = E, E∗ and E? = (E | ε).

Informally, a regular expression is 1-unambiguous if one can uniquely match
an occurrence of a symbol in the regular expression to a character in the input
string without looking beyond that character. That is, 1-unambiguous regular
expressions require a lookahead of one symbol only.

We model DTDs as follows:

Definition 1 (Document Type Definition). An XML Document Type Def-
inition (DTD) is a triple 〈Σ, r ,R〉 where r ∈ Σ is a distinguished label and
R is a total function associating to each a ∈ Σ a content model defined by a
1-unambiguous regular expression over Σ ∪ {#PCDATA}.
One can test whether a regular expression E is 1-unambiguous by checking
whether its corresponding Glushkov automaton [22] is deterministic [9]. First, we
mark the symbols in E with subscripts to distinguish among different occurrences
of the same symbol. For instance, a marking of the regular expression a(b∗ |
(c, b∗)) is a(b1∗ | (c, b2∗)). E′ denotes the marked version of E; each symbol in E′

(subscripted or not) is called a position of E, denoted pos(E). The subscripting
is such that if F | G or F, G are regular expressions, then pos(F ) and pos(G)
are disjoint. A marked regular expression E′ is a regular expression over the
alphabet pos(E), such that each subscripted symbol occurs at most once in E′.
Moreover, for each word w matched by a 1-unambiguous regular expression E,
there is exactly one marked word w′ in L(E′) that corresponds to w; also, w′

can be constructed incrementally by examining the next symbol of w [9].
Notice that, by construction, in the Glushkov automaton of a regular ex-

pression E, states correspond to positions of E and transitions connect those
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Fig. 1. Glushkov automaton of regular expression E = a, ((b, c, d∗) | d+), e

positions that can be consecutive in a word in L(E′) [22]. We will exploit this
property later for characterizing different kinds of XML content models.

Figure 1 shows the transition diagram of the Glushkov automaton for the
1-unambiguous regular expression E = a, ((b, c, d∗) | d+), e.

3.1 Element and Document Validity

An element e is said to be valid if its content (i.e., the sequence of elements and
text nodes that are children of e) conforms with the content model associated
with its type. More precisely, let D be a document, e be an element in D, and
D = 〈Σ, r ,R〉 be a DTD. The content string of e is formed by the concatenation
of the labels of all nodes in its content, ignoring attributes (text nodes are labeled
PCDATA). We say e is valid with respect to D if its content string w is a word
matched by the content model associated with its label in R. Also, we say that
D is valid with respect to D, denoted D ∈ L(D), if all its elements are valid with
respect to D and the label of its root element is r.

Notice that every symbol in the content string of an element e corresponds
to a single element or text node forming e’s content. Thus we will use the terms
element content and content string interchangeably from now on.

Incremental Validation. We refer to static validation as the process of determin-
ing whether a document is valid with respect to its DTD. In a dynamic scenario
where updates are applied, it is necessary to prevent updates to a valid docu-
ment that result in invalid ones. The incremental validation problem is defined
as: given D ∈ L(D), and an update U , is it the case that U(D) ∈ L(D)?

3.2 XML Updates

In this work, we consider a minimal set of low-level update primitives that could
be used for implementing update expressions given in a high-level update lan-
guage (e.g., see [10]), or used directly by an XML editor.

Each primitive consists of an atomic operation, informally defined as follows.
Let D be an XML document, x be the identifier of an element in D, and y
be a constant describing an element not in D. An Append(x, y) applied to D
appends y as the last child of the element pointed to by x. An InsertBefore(x, y)
applied to D inserts y as the immediate left sibling of the element pointed to by
x. Finally, Delete(x) applied to D removes from D the element pointed to by x.
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Name Type Search Key Data Unique?
Edge B-tree element id parent id, type, state Yes
LS B-tree element id id left Yes
RS B-tree element id id right Yes
FLC B-tree element id id first, id last Yes
Transition B-tree parent type, from to, type, label No
Content Hash file element id pcdata value Yes

Fig. 2. Main data structures for storing XML documents. The Search Key column
indicates the values used as index keys for accessing the associated data; the column
Unique determines whether the keys are unique for each entry.

We also allow composite update operations, which consist of an ordered se-
quence of one or more of the primitive operations above. Without loss of gen-
erality, we assume that each composite update modifies the content of a sin-
gle element in the document. Also, we assume that in a composite update all
InsertBefore(·, ·) and Delete(·) operations precede all Append (·, ·) operations.
Finally, we assume that if an InsertBefore(x1, y) precedes a Delete(x2) then ei-
ther x1 = x2 or the element pointed to by x1 precedes the element pointed to
by x2 in the document. In other words, the primitive operations in a composite
update are sorted according to the relative position of the elements they modify.
We will come back to this assumption later on.

Notice that one can construct any XML document with these three primi-
tives, and more complex operations (e.g., copying elements) can be rewritten as
sequences of them.

3.3 Storage Data Structures

We use the data structures described in Figure 2 for storing the XML documents
in our approach. For simplicity, we ignore XML attributes (see [4] for a discussion
of how to handle the incremental validation of attribute constraints in our work).
The Edge file materializes the parent-child relationship among elements and also
between elements and text nodes. The textual (PCDATA) content of element
nodes is kept in the Content file. The LS (for left-sibling) and RS (resp. right-
sibling) files materialize the predecessor and successor relations among sibling
elements, respectively; the FLC file keeps track of the first and last children of
every non-empty element in the document. Finally, the Transition file stores the
transition functions of all content models in the DTD; different content models
are identified by the parent type component of the search key for that file.

In this work, we assume that the access and update cost for each file above
to be logarithmic in the size of the document.

4 Efficient Incremental Validation

In this section we give a general algorithm for the incremental validation of XML
documents w.r.t. DTDs after composite updates (Section 4.1), describe a class
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function findTransition(q, l)
q′ ← δ(q, l)
if [q′ is undefined] then reject else return q′

function findStartingState(u)
if [eid(u) is first child] then q ← qI

else x ← eid(u) − 1; q ← state(x) fi
return q

function readOld(q, x, y)
do q′ ← findTransition(q, label(x)); x ← rightSibling(x)
while [q′ 
= state(y) and x has a right sibling and x 
= y]
return (q′, y)

Fig. 3. Helper procedures for the incremental validation algorithm

of DTDs for which this algorithm has a much better worst-case time complexity
than full revalidation from scratch (Section 4.2), and discuss ways of actually
effecting the updates (Section 4.3).

The setting is as follows. Let e be an element, w = w1 . . . wn be its content
string, E be the 1-unambiguous regular expression defining the content model of
e, G = (Q, Σ, δ, qI , F ) be the Glushkov automaton of E, and U = u1, . . . , uk be a
composite update with k primitive operations. Initially e is valid; i.e., w ∈ L(G).
We want to determine whether U(w) ∈ L(G), using an auxiliary data structure
containing the path of w through G (i.e., the sequence w̃ = qIq1 . . . qn, where
each qi ∈ Q, i > 0 is the state in G we reach after reading wi). We assume that
k � n. (Recall n is the size of the document.)

4.1 Algorithm

For the sake of readability, we introduce the following notation. We will denote
by eid(u) the element id specified by an update operation u; that is, if u =
InsertBefore(x, ·) then eid(u) = x, and if u = Delete(x), then eid(u) = x. We
denote by rightSibling(x) the element id of the immediate right sibling of the
element pointed to by x. We will use label (x) to denote the label of an element
with id x already in the document. If u is an InsertBefore(·, y) or Append(·, y)
operation, we denote by label (u) the the label of the element y. Finally, we denote
by state(x) the DFA state associated with element x during the static validation.

Figure 3 shows some procedures which are used in the main algorithm, given
in Figure 4. The algorithm works in two separate phases: first we deal with
all InsertBefore(·, ·) and Delete(·) operations (lines 2-22); then we deal with
Append(·, ·) operations (lines 23-27). We discuss each separately next.

Insertions and Deletions. Because of the way the update operations are ordered
(recall Section 3.2), the incremental validation of insertions and deletions can be
done by simultaneously scanning the content string w and u1, . . . , uk once. In
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Input: composite update u1, . . . , uk

1. restart ← true; i ← 1
2. while [i < k and ui is not an append] do
3. if [restart ] then restart ← false; from ← findStartingState(ui) fi
4. if [ui is a deletion] then
5. do rs ← rightSibling(eid(ui)); i ← i + 1;
6. while [ui is a deletion and eid(ui) = rs ]
7. if [eid(ui−1) was last child] then
8. if [from /∈ F ] then reject else continue fi
9. fi

10. (to, ce) ← readOld(from, rs , eid(ui))
11. if [ce is last child and to /∈ F ] then reject fi
12. if [eid(ui+1) 
= ce ] then restart ← true fi
13. from ← to; continue
14. fi
15. if [ui is an insertion] then
16. do to ← findTransition(from, label(ui)); from ← to; i ← i + 1
17. while [ui is an insertion and eid(ui) = eid(ui−1)]
18. rs ← rightSibling(eid(ui−1)); (to, ce) ← readOld(from, rs , eid(ui))
19. if [ce is last child and to /∈ F ] then reject fi
20. if [eid(ui+1) 
= ce ] then restart ← true fi
21. fi
22. endwhile
23. if [i < k] then
24. let from be the state of the last child of the element being updated
25. do to ← findTransition(from, label(ui)); from ← to; i ← i + 1 while [i ≤ k]
26. if [to /∈ F ] then reject fi
27. fi
28. accept

Fig. 4. Algorithm for the incremental validation of a composite update operation. F
denotes the set of accepting states for the Glushkov automaton corresponding to the
content model of the element being modified.

the algorithm of Figure 4, from keeps the current state during the revalidation
process, and ui refers to the current atomic operation being executed. Notice
that from is initialized by the function findStartingState(·) (see Figure 3) as
follows. If the current operation ui refers to the first child of e (the element
being updated), from is set to the initial state qI . On the other hand, if eid(ui)
is not the first child of e, we start revalidating from the state of its immediate
left sibling, which is kept in the auxiliary data structure.

The revalidation after the deletion of one or more consecutive elements con-
sists of simply “skipping” all symbols in w that correspond to elements being
deleted (lines 5-6 in Figure 4) and simulating the DFA from the from state,
reading the remaining symbols in w (line 10). This revalidation continues until
one of these conditions is met: (a) we simulate one step in the DFA and arrive
at the same state in w̃ for the corresponding element; (b) we reach an element
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w : a b c d d e

w̃ : qa qb qc qd1 qd1 qe

(a) deletion of “bc”

b c

w : a d d e

w̃ : qa qd2 qd3 qe

(b) insertion of “bc”

Fig. 5. Revalidation after deletion (a) and insertion (b), using the DFA from Figure 1.
The arrows indicate the new transitions that must be computed.

that will be affected by the next update operation; or (c) we reach the end of w,
in which case we reject the update if the current state is not an accepting one.

In cases (a) and (b) we continue the revalidation by jumping to the next
update operation; the difference between the two cases is that in (b) we have to
find a new value for the from variable.

The revalidation after two consecutive deletions is illustrated by Figure 5(a).
In the figure, w = abcdde (w̃ = qaqbqcqd1qd1qe) and the update consists of
deleting the substring “bc”; in this case, we must find a transition from qa labeled
with d, as indicated by the arrow. Because δ(qa, d) = qd2 , which is different than
the state previously associated with that symbol in w̃, we continue revalidating
w (until we reach the last symbol e, in this case).

The revalidation of insertion operations is very similar to that of deletion
operations. The only difference is that instead of “skipping” the labels of elements
being deleted we simulate the DFA using the labels of those elements being
inserted at the same position in w (lines 16-17). Once all new element labels
are “consumed”, we continue the revalidation using the elements already in the
document, as illustrated by Figure 5(b). The same conditions for stopping the
revalidation as in the deletion case apply here.

Appends. Handling the Append(·, ·) operations (lines 23-27 in Figure 4) is
straightforward. All that needs to be done is finding the state of the last child
of the element being updated (line 24), and simulating the DFA using the labels
of the elements being appended. We accept only if we reach an accepting state
after consuming all symbols being appended.

Putting it all Together. In summary, the revalidation of an arbitrary composite
update u1, . . . , uk consists of simultaneously scanning the list of updates and the
element being modified, alternating between deletions and insertions as outlined
above, and applying all appends at the very end. Next, we will discuss the
complexity of this algorithm for arbitrary DTDs, and characterize one class of
DTDs for which the algorithm is guaranteed to perform well in practice.

Analysis of the Algorithm. We now discuss the correctness and the compu-
tational complexity of our algorithm. The following is easy to verify:

Proposition 1. If s is the content string resulting from applying the composite
update defined by u1, . . . , uk over the content of a valid element e, then s ∈ L(G)
if and only if the algorithm in Figure 4 accepts on input u1, . . . , uk.
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The complexity of our algorithm is as follows. The loop for insertions and
deletions (lines 2-22) runs O(k) times, inserting or deleting elements. Revali-
dation after a single insertion or deletion may require revalidating all of the
original content string in the worst case. However, notice that because of the
way the operations are sorted and the fact that the algorithm never uses an
element that is to the left of the one being considered, the loop of lines 2-22
never scans the same element twice. Similarly, the loop for handling appends
(lines 23-27) runs in O(k) time. Notice also that all document operations in the
algorithm consist of finding the right sibling, the parent or the ids of the first
and last children of an element, all of which require O(log n) time using our data
structures. Thus, the incremental validation of a composite update can be done
in O((k + n) log n) = O(n log n) time.

The only auxiliary information used by the algorithm is the path w̃ of the
content string w through the Glushkov automaton, computed during the static
validation of the document. Storing such data requires O(n log d) space, where
d = O(|D|) and D is the DTD used for validating the document.

As we can see, the worst case complexity of the incremental validation algo-
rithm above, as expected, matches that of full revalidation from scratch. The
reason for this is, as in the case of processing each atomic update at a time [4],
we might have to revalidate the entire content string.

Ordering Atomic Updates. We now revisit our initial assumption that the
atomic operations in a composite update are sorted according to the relative
position of the elements they refer to (recall Section 3.2), which is central to the
efficiency of our algorithm. Notice that this causes no problem in the setting
of an XML editor, in which case the XML document being edited is already
in memory, thus allowing the editor to keep track of the relative ordering of
elements. A more challenging scenario is that of an XML database being updated
by means of a declarative language. In this setting, one would use predicates (e.g.,
XPath expressions) for selecting the nodes defining the positions in the content
string that are affected by the update. Thus, we need a way of ordering two
nodes e1 and e2 (i.e., knowing which comes before the other) given just their
ids . One way of accomplishing this is to materialize the transitive closure of
the successor relation among siblings (recall Section 3.3), and maintain it after
updates—which can be done efficiently [12].

While the previous approach is viable, a simpler method that would suffice
here is to keep the position of every element relative to its siblings, and a counter
that indicates the age of that element. Notice that the relative ordering of nodes
e1 and e2 is not affected by deletions of other nodes; also, the relative ordering
can be easily maintained after appends (because we can always find the ordering
of the last element); thus, the only concern is the InsertBefore(·, ·) operation.
Let e be an element whose relative ordering is o, and whose age is a; when we
insert y1, . . . , yk before e, for each yi, we define its ordering as o− 1 + i, and its
age a + 1. Thus, it follows that e1 precedes e2 if either e1’s ordering is less than
that of e2 or e1 is newer than e2. Notice that using this simple scheme does not
change the time complexity of our algorithm.
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Type Specialization. Throughout the paper our discussion centered around
DTDs only. As mentioned earlier, our method also applies to some aspects of
XML Schema, namely type specialization, which allows different content models
to be assigned to elements with the same label, depending on the context in which
they appear [20]. As discussed in detail in [4], this can be accomplished by adding
another column to the search key of the Transition file (recall Section 3.3) for
keeping track of the element context. Because of the way XML Schema defines
type specialization, every element type defines a new context.

4.2 Bounded-Edit DTDs

We now define a class of DTDs that admit much more efficient incremental
validation for composite updates. To motivate the discussion, consider again the
content model E = a, ((b, c, d∗) | d+), e, whose Glushkov automaton is given in
Figure 1, and the string w = abcdd · · ·de, where all d symbols match position
d1. A composite update that deletes “bc” from w causes all d elements to match
d2 instead of d1 as before. That is, the incremental validation of this update
requires O(n) (n = |w|) steps (and changes to w̃ as well), which is undesirable.

Intuitively, we want DTDs in which the amount of work required for the
incremental validation of an element is independent of the length of its content
string (and thus, is independent of the document size). That is, the amount
of revalidation work for such DTDs is bounded by inherent properties of the
content models in them.

Recall that the edit distance between two strings is the minimum number of
character insertions and/or deletions that make the two strings identical [2]. We
define the following:

Definition 2 (Bounded-Edit DTDs). E is a bounded-edit regular expression
if E is 1-unambiguous and there exists l > 0 that depends on E and such that
for every composite update u1, . . . , uk and w ∈ L(E) we have that if s = U(w)
and s ∈ L(E) then the edit distance between the marked versions of w and s is
at most k + l.

A DTD D = 〈Σ, r ,R〉 is bounded-edit (BE) if all regular expressions defining
content models in R are bounded-edit.

Notice that the number of steps needed by the algorithm in Figure 4 to determine
whether s = U(w) ∈ L(E) is bounded by the edit distance between w′ and s′.
Thus, the following is immediate:

Corollary 1. The incremental validation of a composite update with k atomic
operations for a bounded-edit DTD D can be done in O((k+ l) log n) time, where
l depends on D only.

We now give a characterization of BE regular expressions (and thus DTDs) based
on structural properties of their Glushkov automata.

Proposition 2. Let E be a regular expression and G its Glushkov automaton.
E is bounded-edit if and only if G does not have two disjoint sets of states
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x1, . . . , xm and y1, . . . , ym such that: x1 and y1 are reachable from qI ; xi and
yi, 1 ≤ i ≤ m, correspond to positions of the same unmarked symbol; and both
x1, x2, . . . , xm, x1 and y1, y2, . . . , ym, y1 spell cycles through G.

For instance, E = a, ((b, c, d∗) | d+), e is not BE because {qd1} and {qd2} satisfy
all the conditions specified in Proposition 2.

4.3 Effecting the Updates

The algorithm in Figure 4 deals with checking whether the composite update is
permissible. We now consider effecting the changes after an update is deemed
permissible.

Updating both the content string w and its path through G (w̃) requires
(asymptotically) the same time as determining whether the update is permis-
sible, since our algorithms visit only those symbols in w and w̃ that must be
visited for the incremental validation. Three basic strategies are possible for ef-
fecting the changes: (1) buffering the results of the incremental validation first,
and effecting them if the update is deemed permissible; (2) making a second pass
over the string for effecting the changes if the update is deemed permissible; or
(3) effecting the changes during the revalidation, undoing them if the update is
deemed not permissible. For simplicity, we use the latter approach, which can
be easily implemented using transactions.

5 Statistical Analysis of Document Schemas

In this section, we present a statistical analysis of the content models found in
several document schemas on the Web. We analyzed a sample consisting of 264
document schemas, containing both DTDs and XSDs. Among those, 92 DTDs
and 59 XSDs in our sample were used in a previous statistical study of document
schemas on the Web (Bex et al. [5]). The remaining schemas were collected from
the xml.org repository. Collectively, these schemas account for 26604 content
models; a very small number of those (14) were not 1-unambiguous, and thus
were discarded.

We classify the content models in our sample according to the following cate-
gories: simple models define regular expressions of the form r = r1, . . . , rj where
each ri = a | a∗ | a+ | a?, a is an element label, and each label appears at most
once in r; CF models allow arbitrary regular expressions in which each element
label appears at most once [4]; 1,2-CF models allow regular expressions in which
there may be many occurrences of the same element label, provided they are not
too close to each other [4]; BE is as defined in Section 4.2; 1-UNAM models
allow any 1-unambiguous regular expressions. Notice that

simple ⊂ CF ⊂ 1,2-CF ⊂ BE ⊂ 1-UNAM.

Testing whether a content model belongs to one of the classes above is done
by a graph-traversal algorithm that checks whether the corresponding Glushkov
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Table 1. Prevalence of content models in a sample of schemas found on the Web

Collection simple CF 1,2-CF BE 1-UNAM total
Counts

DTDs from xml.org 15230 887 3 52 8 16180
DTDs from [5] 5569 1958 16 55 64 7662
XSDs from [5] 2551 204 1 6 0 2761

Percentages
DTDs from xml.org 94.2% 5.5% 0.02% 0.32% 0.05% 100%

DTDs from [5] 72.7% 25.5% 0.24% 0.72% 0.84% 100%
XSDs from [5] 92.4% 7.4% 0.03% 0.20% 0% 100%

automaton satisfies the structural restrictions associated with each such class.
Since XSDs are not defined directly in terms of regular expressions, we use the
method of Bex et al. [5] for extracting the corresponding content models.

Table 1 shows the number of content models in each class above. The top
half of the table shows absolute counts of content models in each class, while
the bottom half shows the respective fractions relative to the total number of
content models in the collection. For easier reading, we count each content model
in the most restrictive class it belongs to. As one can see, the vast majority of
content models in our sample are either CF (98% or more of them) or BE (99%
or more). It should be noted that CF content models allow the same incremental
validation algorithms to be implemented without the need for auxiliary space [4].

6 Experimental Evaluation

To evaluate the efficiency of our proposed incremental validation algorithm, we
conducted two experiments on several synthetic XML documents generated ac-
cording to the XMark benchmark specification [21]. The sizes of these documents
were 512 KB, 4 MB, 32 MB, 256 MB, and 2 GB. Because the XMark DTD does
not allow for composite updates involving more than one element type, we intro-
duced two minor modifications to the content model of the item elements for the
purposes of our tests; Figure 6 depicts these changes. We note that the modified
XMark DTD is a bounded-edit schema. We implemented the algorithm using
Berkeley DB to store the various data structures associated with our approach.
While we conducted experiments with varying buffer sizes for the Berkeley DB
engine, due to the lack of space we discuss here only those experiments in which
the buffer size was capped at 128 KB. All experiments were executed on an
desktop-class machine: Intel Pentium4 3.4 GHz processor, with 1 GB of RAM
and running Linux 2.6.9. Finally, each plot in the graphs below represents the
average over a number of trials (20 in the case of the 512 KB document, 50 for
the remaining four documents), with outliers removed.

The first experiment was designed to simulate a localized editing operation;
in order to do this, we pick an item element in the North America region at
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<!ELEMENT item (location,quantity,..., payment,description,shipping,...>

(a) Original content model for item

<!ELEMENT item ((location | (number,street,zip,country)), quantity,. . .,
((payment, description, shipping)* | (delivery*)),...>

(b) Modified content model for item

Fig. 6. Modifications made to the XMark DTD for the purposes of our experiments
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Fig. 7. Experimental results. All times are reported in microseconds; notice the graph
in (a) is shown in log-log scale.

random, and proceed as follows. In the first phase of the experiment, we applied
a composite update operation that replaced the location of that item by a
sequence consisting of a number, street, zip and a country element. Figure 7(a)
shows the average times for revalidating the document, updating the document,
and managing the transaction. The second phase consisted of essentially undoing
the changes made in the first phase: the previously-inserted number, street,
zip and country child elements of item were deleted and a location child
element was inserted. (Due to the lack of space, we omit the graph for the second
phase; the results provide a similar analysis to that of phase 1.) As one can see,
update and revalidation times both exhibit excellent scalability with respect to
document size, while the transaction overhead remains constant and negligible.
Notice that the revalidation costs are virtually identical for the 512KB and 4MB
documents; this is due to buffering done by Berkeley DB.

The second experiment measured the revalidation costs as a function of the
length of the composite update (i.e., the number of atomic operations in it). For
this experiment, we used the 32 MB XML document; each run of the experiment
applied a composite update operation consisting of the deletion of the payment,
description, and shipping child elements of a randomly-selected item in the
North America region, followed by the insertion of a parameterized number
of delivery elements as children of the item element. Figure 7(b) shows the
results of this experiment using composite update operations in which 15, 75,
135, 195, and 255 delivery elements were inserted. Notice that, as expected, the
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revalidation time, which dominates the cost, increases linearly with the length
of the update. The low (and almost constant) cost of updating the document is
explained by the fact that not all update operations incur the creation of new
pages on disk.

7 Conclusion

We presented a simple algorithm for the incremental validation of XML doc-
uments after composite updates. We characterized the BE class of document
schemas for which the algorithm yields optimal performance, and showed that
BE accounts for over 99% of a large sample of DTDs and XSDs found on the
Web. We showed an experimental analysis of our algorithm, indicating that it
scales well with document size, and exhibits promising performance with docu-
ments ranging in size from 512 KB to 2 GB. Moreover, our algorithm relies on
simple data structures, which makes it attractive from an implementation point
of view.

In terms of future work, we are currently working on supporting queries over
our XML store. We have added support for path indexes, and are currently inves-
tigating the use of the transitive closure of the parent-child relation for comput-
ing ancestor-descendant queries efficiently. We believe that our data structures,
coupled with indexes, can be used by a native XML store to provide efficient
query and update processing. We also believe that, as the problems related to up-
dating XML receive increased attention, a new generation of XML benchmarks
will be needed.
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